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A B S T R A C T   

Fisheries stock assessments have traditionally modeled age and size composition data using the multinomial 
likelihood, however the multinomial cannot appropriately account for the correlations and overdispersion that 
exist in the observed data or in the model residuals. Not accounting for these phenomena can affect assessment 
performance. Methods to remedy this have included down-weighting composition data within assessments either 
arbitrarily or by using iterative re-weighting algorithms, and by using alternative likelihoods to the multinomial 
that can be weighted within the assessment. Iteratively re-weighting composition data in stock assessments is 
inefficient and does not ultimately account for correlations in the residuals, and alternative likelihoods for 
composition data have not all been evaluated using stock assessment simulations. To evaluate the performance of 
alternative likelihoods in fitting composition data, we first developed a spatially explicit age-structured operating 
model to simulate correlation structure observed in real composition data. We then fit spatially aggregated 
assessment models to the simulated data and assessed the performance of various formulations of composition 
likelihoods (Multinomial, Robust Multinomial, Dirichlet, Dirichlet-multinomial, and Logistic-normal) in esti-
mating stock dynamics and quantities of management interest. Results suggest that the degree of process error 
(combining both process variation and model misspecification) and the sample size of the composition data have 
a larger effect on the relative performance of different likelihoods than the degree of overdispersion and cor-
relations in composition data. When the composition sample size was moderate to large and there existed at least 
a moderate amount of process error, the Logistic-normal likelihood performed best. When the sample size was 
small, or when process error was non-existent or negligible, the Dirichlet-multinomial likelihood performed best.   

1. Introduction 

Fisheries management is largely facilitated by stock assessments 
(Dichmont et al., 2016), providing managers with estimates of, and 
uncertainty regarding stock abundance and dynamics on which to base 
management decisions. The term “stock assessment” within fisheries 
generally refers to a suite of formal population models that have been 
developed for the purposes of estimating past and current stock dy-
namics, such as abundance and exploitation rates, using fishery and/or 
research survey data within a statistical modeling framework. A “sta-
tistical modeling framework” refers to the principle that these models 
compare expected values (predicted by the model) to observations 
(data) using statistical distributions. These distributions are referred to 
as likelihoods when used to estimate parameters conditioned on data, as 

they output a measure of how likely a specific set of model parameters 
are, given observations and assumed model structure. 

Stock assessments vary in complexity, however contemporarily 
almost all involve at least one likelihood function (Maunder and Punt, 
2013). When multiple data sources are used within a stock assessment 
(and thus multiple likelihoods), the model is considered an “integrated” 
assessment (Francis, 2017; Maunder and Punt, 2013). The main types of 
data integrated within assessments include annual removals (total catch 
from a fishery), abundance indices, and distributions of lengths and ages 
in the catches, referred to as composition data. Abundance indices and 
composition data often derive from both the sampling of fisheries and 
research surveys. Contemporarily, most stock assessments are inte-
grated, and most “data-rich” stock assessments are based on age- or 
size-structure. In age- or size-structured assessments, the model tracks 
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the number of fish in age or size classes over time, thus greatly benefiting 
from the incorporation of age- or size-composition data from the harvest 
and/or survey within its total likelihood function. These data provide 
critical information to the assessment on relative year-class strength, 
mortality, selectivity, and in the case of size-composition, growth of 
organisms (Lee et al., 2011; Maunder and Piner, 2015; Punt et al., 2016). 
For integrated assessments, a biologist must make a decision, either 
explicit or implicit, regarding how much weight to assign to each data 
set in the total likelihood function (Francis, 2011). The focus of this 
study is on the treatment and weighting of composition data within 
stock assessment. 

Composition data sources have historically been modeled within 
age- or size-structured assessments using the multinomial likelihood 
(Francis, 2014), however this approach poses some notable issues 
(Francis, 2014; Thorson et al., 2017). These issues largely stem from the 
premise that the multinomial distribution expects independent and 
identically distributed (iid) samples from a population. This assumption 
is almost always violated in fisheries, resulting in large correlations 
between age and length bins, as well as overdispersed composition data. 
Not accounting for correlative error structure and overdispersion in 
composition data can affect assessment point estimates (Francis, 2014) 
and precision (Maunder, 2011) of parameter values important to ecol-
ogy and management. This occurs because, if a statistical distribution 
describing the error structure about an expected value does not conform 
to the distribution of the observed residuals, the maximum likelihood 
estimate is not guaranteed to converge on the true parameter values as 
the sample size approaches infinity (i.e., the consistency property of 
maximum likelihood estimation). Similarly, the estimates of the stan-
dard errors of parameters are not guaranteed to satisfy the asymptotic 
efficiency property of maximum likelihood estimation, which assures 
that the variance of unbiased estimators is at least as small as the inverse 
of the Fisher Information, as the second order derivatives of the Fisher 
Information Matrix (the Hessian) will be improper. 

The correlations and overdispersion in composition data can result 
from the behaviors of fishers and target species, in addition to the way in 
which the data are sampled. Aquatic organisms often aggregate based on 
age or size, or associate with different habitats at different ages and 
sizes, and fishers tend not to distribute and fish randomly. A simple 
example is that of intrahaul correlation (Pennington and Volstad, 1994), 
which is based on the premise that fish in the same catch (e.g., from the 
same gear haul) are generally more similar to each other in length and 
age than fish from different catches. Thus, multiple samples taken from 
the same catch will not be independent, instead amounting to a cluster 
or batch sample, correlated spatially and temporally. The correlations 
observed in the data tend to be positive between bins that are close 
together, and negative between bins that are far apart (Francis, 2011; 
see Fig. 1. in Francis (2017) for an example). Having substantial corre-
lations in composition data can cause overdispersion, or a larger vari-
ance observed in the data than would be expected under the 
multinomial. Conceptually, this results in the actual sample size not 
being indicative of the true information content contained in the data, 
and thus multinomial models will assume a smaller variance than is 
actually present in the data. Given that the multinomial distribution 
expects negative correlations between bins (the correlations are usually 
small, Francis, 2011), it cannot mimic the positive correlations present 
in fisheries composition data, nor can it account for overdispersion given 
the true sample size of the data. 

Process error, which we broadly define as the mismatch between the 
estimation model and the true dynamics of the system (or operating 
model), can also create and may exacerbate this issue (Francis, 2011, 
2017), by causing similar correlations in the residuals once the model is 
fit. Consider an example from Francis (2011): take an assessment model 
that specifies a constant fishery selectivity, however the true selectivity 
actually varies about the model predicted selectivity from year to year. 
In a year in which the fishery selects more larger fish and fewer smaller 
fish, the residuals will be structured such that the model is 

underestimating the catch composition of larger fish and overestimating 
the catch composition of smaller fish, or positive residuals for large fish 
and negative for small (see Fig. 3. in Francis, 2011). The pattern would 
be reversed in a year where the fishery selects fewer larger fish and more 
smaller fish. This can create similar correlations to those observed as a 
function of cluster or batch sampling (i.e., positive correlations between 
bins that are close together, and negative for bins that are far apart). 
Such process error can also lead to overdispersion, where model re-
siduals have a greater variance than would be expected under multi-
nomial (iid) sampling given the sample size. 

Considering the issues presented above, a few notable studies have 
proposed some solutions (Francis, 2011, 2014, 2017; Maunder, 2011; 
Thorson et al., 2017). Collectively these studies focused on two potential 
solutions to the overdispersion-correlation issue in composition data. 
The first involves down-weighting composition data within an assess-
ment using an effective sample size (ESS) that is less than the true 
sample size to reflect both the decreased information content in the data 
and error due to any model misspecification. This is often done using 
iterative methods, which involve fitting an assessment, adjusting ESS 
based on some formula (such as those in Table A1 of Francis (2011)), 
then re-fitting the assessment with the new ESS. This process is repeated 
until the expected variance of the residuals given an ESS matches (or is 
near) that of the observed residual variance (although the formulas 
differ in how they calculate the variances). This iterative approach 
suffers from several drawbacks. First, down-weighting does not account 
for correlations in the error structure; it solely accounts for the fact that 
the data contain less information than is expected with iid sampling and 
attempts to down weight the data to account for model misspecification. 
This addresses the overdispersion issue, however not the correlative 
issue. The second, and potentially more important drawback with this 
approach is that iterative re-weighting is impractical and inefficient. 
Stock assessments are rarely done without sensitivity analyses or 
retrospective analyses, each of which involve re-running assessments 
multiple times under different parameters or data. This problem is 
further compounded when an assessment is run in a computationally 
intensive Bayesian framework where a single run could take multiple 
days, or in an ensemble framework (Stewart and Martell, 2015; Jardim 
et al., 2020) that combines multiple (perhaps thousands of) model fits. 

The second solution to the overdispersion-correlation problem that 
the aforementioned publications explore is utilizing a likelihood that is 
able to be weighted within a stock assessment. This approach also has 
the advantage of directly incorporating uncertainty in data weighting 
within the assessment (through uncertainty in the self-weighting 
parameter). Maunder (2011) tested several likelihood formulations 
and found the Dirichlet produced the most unbiased estimates of 
effective sample size. Francis (2014) described both the Logistic-normal 
and the Dirichlet as promising candidates for modeling composition 
data, with specific emphasis given to the Logistic-normal as it is theo-
retically able to incorporate residual correlation structure other than 
that of the multinomial within its likelihood formulation. Thorson et al. 
(2017) proposed utilizing a compound Dirichlet-multinomial likelihood 
as a self-weighting alternative to the multinomial in stock assessment. 
The Dirichlet-multinomial has since been increasingly incorporated into 
more assessments. Unfortunately, to our knowledge the Logistic-normal 
has received little simulation testing within stock assessment (as Francis 
(2014) did not fit the likelihoods within stock assessments), and the 
Dirichlet as well as the Dirichlet-multinomial are unable to model pos-
itive correlations in composition data given their correlation structure is 
the same as that of the multinomial. 

One issue that few studies have addressed is the challenge of simu-
lating realistic composition data that includes the correlations theorized 
to be a result of schooling behavior, fisher distribution, or other pro-
cesses. Most simulation studies in the field of stock assessment simulate 
a generic population and generate age- or size-composition data using 
the multinomial distribution, thus assuming iid sampling and generating 
data lacking the overdispersion and correlations that are so often present 

N. Fisch et al.                                                                                                                                                                                                                                    



Fisheries Research 243 (2021) 106069

3

in real data (notable exceptions being Maunder (2011) and Hulson et al. 
(2012), who simulated schooling). These studies then commonly fit the 
data generated with the multinomial distribution using the multinomial 
or other likelihood (in the case of Thorson et al. (2017), the Dirichlet- 
multinomial). This unrealistic simulation of the data-generating pro-
cess could be expected to produce overly optimistic results (Francis, 
2012). In this interest, herein we explore how different composition 
likelihoods perform when fit to simulated data containing correlations 
and overdispersion. We achieve this by first building a spatially explicit 
operating model that is able to simulate the correlational structure often 
seen in composition data. We then fit spatially aggregated assessment 
models to data generated from the operating model to assess the per-
formance of various likelihoods used for fitting compositional data. We 
specifically explore how the degree of observation error, process error, 
and the sample size of the composition data influence the relative per-
formance of composition likelihoods. In what follows, when referencing 
process error we mean to denote the total mismatch between an esti-
mation model and the true dynamics of a system, consisting of both 
white noise deviations about quantities (termed process variation), 
and systematic bias (termed model misspecification) which can come 
in the form of incorrect sub model structure (e.g., functional form of 
selectivity or stock-recruit relationship), fixing parameters at incorrect 
values, or not accounting for time variation in processes (e.g., direc-
tional variation in selectivity). In contrast when referencing observation 
error, we mean to denote the error in data if the sampling process were 
repeated (i.e., sampling error). 

2. Methods 

2.1. Overview 

The spatially explicit operating model is based on the life history of 
red snapper (Lutjanus campechanu) in the US Gulf of Mexico (GOM), and 
many life history parameters were taken from the most recent stock 
assessment (SEDAR, 2018; parameter values provided in Table 1). Red 
snapper exhibit ontogenetic movement offshore (Grüss et al., 2017; 
Karnauskas et al., 2017), which makes them an ideal candidate species 
to develop a spatially explicit simulation model where fish segregate to 
different habitats by age. The red snapper stock assessment (SEDAR, 
2018) spans the entire Gulf of Mexico contained within the US Exclusive 
Economic Zone. To make computation feasible, the spatial extent of the 
spatially explicit operating model was decreased to span the Florida Gulf 
of Mexico coastline from 10 to 500 meters in depth (Fig. 1). The model is 
divided into 0.1 decimal degree areas, resulting in 1559 individual 
spatial cells. The western spatial extent of the model was cut off at -87.5◦

longitude (roughly the border of Florida), while the southern extent was 
cut off at 24.5◦ latitude. 

2.2. Operating model (OM) 

The operating model is structured by age and space. The model runs 
for 150 years, which includes 50 years of initialization and 100 years of 
fishing. The ages modeled start at age 0 and include a plus group at age 
20. The abundance at age within a spatial cell is calculated using  

Where Ny,a,c is the abundance at age a in year y that is in spatial cell c (a 
cell in the grid), Ry is the global recruitment of age-0 fish in a given year, 
XR

c is the proportion of recruits allocated to cell c, Fy− 1,a− 1,c’ is the 
instantaneous fishing mortality in a given cell for an age and year, Ma is 
the natural mortality for an age, and Xy,a,c’,c denotes the proportion of 
individuals of a given age that move from cell c’ to c (age 0 s do not 
move). Movement is assumed to occur instantaneously at the start of the 
year. Global recruitment is calculated using the steepness parameteri-
zation of the Beverton-Holt stock recruitment function (Mace and 
Doonan, 1988) 

Ry =
4hR0SBy

SB0(1 − h) + SBy(5h − 1)

Where h denotes steepness, SBy denotes spawning biomass (SBy =
∑

a
Ny,a*Feca, where Feca represents a combined fecundity/maturity 

ogive), R0 denotes unfished recruitment, and SB0 unfished spawning 
stock biomass. Recruits are allocated to spatial cells based on their depth 
and substrate preference (see movement section) using XR

c . Note that 
the recruitment spatial distribution is independent of year (and thus 
density). 

2.2.1. Parameterizing movement 
The movement matrix was calculated based on a probability function 

of cell attributes, including depth, substrate type, distance to a cell, and 
density of fish in a spatial cell. We based our movement modeling on 
preference-type movement from the spatially explicit stock assessment 
platform/program Spatial Population Model (Dunn et al., 2012). 
Movement of this type has been conducted for Ross Sea Antarctic 
Toothfish (Mormede et al., 2017), which exhibit a similar ontogenetic 
movement offshore to red snapper. To formulate movement, the pref-
erence for each spatial attribute type (i) is defined based on some 
function fi

(
θi,Ai,c

)
, where θi are the parameters of a function for a given 

attribute type and Ai,c is the value of the specific attribute for that type 
and spatial cell. Given four attribute types chosen in our model (depth, 
distance, density, substrate), the total preference of each cell is then the 
product of the individual preference functions 

Pc =
∏

i
fi
(
θi,Ai,c

)

The probability of moving from cell c’ to any other cell c is then 
defined as the preference of moving to cell c divided by the sum pref-
erence of all the cells. 

Xy,a,c’,c =
Py,a,c
∑

c
Py,a,c 

Note the preferences in the above formula are year- and age-specific. 
The spatial distribution of recruits was calculated solely using the depth 
and substrate preference functions 

XR
c =

PR
c∑

c
PR

c 

Variation was added in movement and the spatial distribution of 
recruits using the multinomial distribution. Further details on the 

Ny,a,c =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RyXR
c if a = 0

∑

c’
Xy,a,c’,c

(
Ny− 1,a− 1,c’e− (Fy− 1,a− 1,c’+Ma− 1)

)
if 0 < a < 20+

∑

c’
Xy,a,c’,c

(
Ny− 1,a− 1,c’e− (Fy− 1,a− 1,c’+Ma− 1) + Ny− 1,a,c’e− (Fy− 1,a,c’+Ma)

)
if a = 20+
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formulation of each preference function can be found in Appendix B. 

2.2.2. Fishing 
Total effort in each year was simulated by first defining the average 

effort as a logistic increase from year 51 to the midpoint of the fishing 
time series (year 100), followed by constant effort fixed at a value that 
equaled 75 % of the asymptote of the logistic (year 100 effort level) for 
the final 50 years of the time series. This was done to simulate the early 
development of a fishery followed by a management regime starting in 
the second half of the fishing time series. Variability was then added to 

the average effort timeseries by drawing from a normal distribution with 
a specified CV (operating model parameter (OMP). 32, set at 0.25), to 
obtain the total effort in each year (Supplemental Fig. 1). 

Effort was assumed to originate from a port at the coastline center 
point for the 23 coastal counties in Florida that boarder the Gulf of 
Mexico (Supplemental Table 1, Supplemental Fig. 2). Units of effort 
(from the total effort expended in the fishery that year) were allocated to 
each individual port based on relative population size within each 
coastal county (Supplemental Table 1) with variation added by drawing 
from a multinomial distribution. 

Table 1 
Parameter table for the spatially explicit operating model (OM) and the sampling model (SM). OMP references an operating model parameter and SMP a sampling 
model parameter.  

Parameter Value Source 

Operating Model   
Ages (bins = 21) 0− 20+
Natural mortality – Ma  See Supplemental Table 2 SEDAR (2018) 
Fecundity -Feca  See Supplemental Table 2 SEDAR (2018) 
Growth  
OMP.1: Asymptotic length – L∞  85.64cm SEDAR (2018) 
OMP.2: Brody growth coefficient – K  0.19 SEDAR (2018) 
OMP.3: Age at size 0 – t0 − 0.39 SEDAR (2018) 
Weight-Length  
OMP.4: a  1.7E-5 SEDAR (2018) 
OMP.5: b  3 SEDAR (2018) 
Recruitment  
OMP.6: Steepness – h  0.99 SEDAR (2018) 
OMP.7: Proportion of recruits allocated east of Mississippi River 0.23 SEDAR (2018) 
OMP.8: Proportion of cells in Florida (out of eastern GOM) ~0.90 Preliminary Calcs 
OMP.9: Unfished recruitment (GOM wide) 1.63E8 SEDAR (2018) 
OMP.10: Unfished recruitment (Florida) – R0  33,277,765 Preliminary Calcs 
OMP.11: Florida unfished spawning stock biomass (Eggs) – SB0  9.25E14 Preliminary Calcs 
OMP.12: SD recruitment (ln scale) 0.3 SEDAR (2018) 
Depth Preference  
OMP.13: Asymptote of mean depth 94.1 Preliminary Calcs 
OMP.14: Growth coefficient of mean depth 0.199 Preliminary Calcs 
OMP.15: Age at mean depth 0 − 2.59 Preliminary Calcs 
OMP.16: Asymptote of variance in depth 1164.5 Preliminary Calcs 
OMP.17: Growth coefficient of variance in depth 0.259 Preliminary Calcs 
OMP.18: Age at variance in depth 0 − 0.85 Preliminary Calcs 
Distance Preference  
OMP.19: Negative exponential rate - λD  0.026 Preliminary Calcs 
Density Dependent Preference  
OMP.20: Threshold density - D*  75 % quantile of unfished density Arbitrary 

OMP.21: Decay rate - λDD  0.5 Arbitrary 
Fishing  
OMP.22: Catchability (within cell) - cq  0.005 Arbitrary 
OMP.23: Contact selectivity midpoint (logistic) 2 Arbitrary 
OMP.24: Contact selectivity growth rate (logistic) 2 Arbitrary 
Fishing Distance Preference  
OMP.25: Negative exponential rate - λFD  0.03 Arbitrary 
Fishing Exploitable Biomass Preference  
OMP.26: Logistic growth rate - γ  0.00025 Arbitrary 
OMP.27: Logistic midpoint Median Exploitable Biomass in Current Year Arbitrary 
Total Effort  
OMP.28: Mean effort logistic growth rate 0.15 Arbitrary 
OMP.29: Mean effort logistic midpoint 25 Arbitrary 
OMP.30: Effort scalar 100,000 Arbitrary 
OMP.31: Percentage of maximum effort 0.75 Arbitrary 
OMP.32: CV of effort 0.25 Arbitrary 
Sampling Model   
Fishery Data   
SMP.1: Percentage of total effort sampled Treatment Arbitrary 
SMP.2: Percentage of catch sampled per sampled unit of effort Treatment Arbitrary 
SMP.3: CV of fishery harvest 0.05 Arbitrary 
SMP.4: CV of fishery CPUE 0.25 Arbitrary 
Survey Data   
SMP.5: Number of cells sampled per year 50 Arbitrary 
SMP.6: Survey catchability (within cell) 0.001 Arbitrary 
SMP.7: Survey contact selectivity midpoint (logistic) 2 Arbitrary 
SMP.8: Survey contact selectivity growth rate (logistic) 2 Arbitrary  
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The amount of fishing effort each spatial cell received in each year 
from a given port was modeled using a gravity model, which assumes the 
share of the total effort allocated to each spatial cell is proportional to 
the relative economic “attractiveness” of that cell, where attractiveness 
is proportional to the expected profitability of a cell based on resource 
availability and cost (Caddy, 1975; Walters and Bonfil, 1999). We 
assumed resource availability or profit as a function of exploitable 
biomass of a cell and that cost was a function of the distance to a cell. 
This allowed us to model the effort allocated to spatial cells from a port 
as positively associated with the exploitable biomass of cells and nega-
tively associated with the distance of cells from the port. This is 
conceptually identical to preference movement in that fishers have 
preference probabilities for fishing in each cell depending on the 
exploitable biomass in that cell at the start of the year, and the distance 
of that cell from their port. The distance function was modeled as a 
negative exponential decay (with one parameter λFD, OMP.25). The 
exploitable biomass profit function was modeled as a logistic function 

where the midpoint was adjusted each year to be the median exploitable 
biomass across all cells, so as to account for shifting baselines. The 
probability a unit of effort was allocated to cell c from port p was then 
calculated as 

P
(
Ep,c
)

y =
e− λFD*kmp,c *1

/(
1 + e(− γ*(EBy,c − medianc(EBy)))

)

∑

c

[
e− λFD*kmp,c *1

/(
1 + e(− γ*(EBy,c − medianc(EBy)))

) ]

Where P
(
Ep,c
)

denotes the probability a unit of effort will go from port p 
to cell c, kmp,c denotes the kilometers from a port to a cell, and EBy,c 

denotes the exploitable biomass in a cell (
∑

a
Ny,a,c*csa*wa, where csa and 

wa refer to contact selectivity and the weight at age, respectfully). 
Variation in effort allocation is added using the multinomial distribution 
with probabilities calculated from the gravity model and sample size as 
the total amount of effort originating from a port in a given year. This 
allocation process resulted in spatial cells not receiving effort and would 

Fig. 1. Abundance at select ages (0, 2, 5, and 10) across spatial cells for 1 year (year 100) in the spatially explicit operating model and for one individual simulation 
iteration. Red indicates cells of higher abundance and blue lower. 
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complicate the calculation of true fishery catch-per-unit-effort (CPUE) in 
each year due to a non-random effort distribution and the need to 
impute CPUE for areas not fished (Walters, 2003). To avoid having to 
impute CPUE for spatial cells that experienced no effort, a baseline of 1 
unit of effort was assumed for all cells during active fishing years (years 
51–150). Given the focus of this analysis, this option was preferred to 
assuming known relative abundances in unfished cells in some other 
manner. 

Fishing mortality for each cell was simulated using a fishery catch-
ability parameter which defined the proportion of abundance in a cell 
caught per unit effort (thus it is the catchability within that cell, cq, 
OMP.22) and a logistic fishery selectivity which modeled the selectivity 
of fish at age within a cell (csa, OMPs 23–24). The logistic fishery 
selectivity simulates a contact selectivity, given within a spatially 
explicit model the need for a spatial availability component of selectivity 
is removed (as this is represented in effort and movement dynamics). 

Fy,a,c = cq*csa*Ey,c  

2.2.3. Process variation 
Process variation, or random variation about biological and fishery 

processes, is included in recruitment using a lognormal distribution (log 
scale standard deviation set at 0.3; OMP. 12), total effort time series 
using a normal distribution (with CV; OMP. 32), and fish movement, the 
spatial distribution of recruits, the proportion of total effort allocated to 
each port in each year, and the probability of fishing spatial cells from a 
port using draws from multinomial distributions. Process variation, as 
noted earlier, is distinct from what we refer to as process error, defined 
as the combination of both process variation and model misspecification 
(similar to Francis, 2014), the latter meant to encompass aspects such as 
incorrect sub-model structure (such as incorrect functional forms of 
selectivity or stock-recruit), fixing parameters at incorrect values, or not 
accounting for time variation in processes. 

2.3. Sampling model (SM) 

The sampling model simulated collecting the following data from the 
true fishery and population quantities of the operating model. 

2.3.1. Fishery age composition 
The observed fishery catch age composition was simulated by sam-

pling the catch at age from a subset of units of effort. This is analogous to 
sampling the catch of a subset of trips or from a subset of fishery 
operators. 

The SM sampled a pre-specified percentage of the total effort in the 
fishery each year (sampling model parameter (SMP). 1). Sampling effort 
at each port was proportional to its effort allocation with variation 
added by drawing from a multinomial distribution. The spatial cells 
sampled from a given port were drawn with replacement with proba-
bilities equal to the probability of fishing spatial cells from that port (in a 
given year). This is equivalent to sampling units of effort from each port. 
The catch at age in a *sampled* spatial cell was sampled using the 
multinomial distribution with sample size equal to a pre-specified pro-
portion of the total number of fish caught for one unit of effort in the cell 
(SMP. 2). This was designed to allow for proportional sampling of the 
catch at age in sampled cell (to account for different abundances in 
cells). To obtain the total age composition for the year, the catch at age 
samples were aggregated across spatial cells and ports for a year. A small 
constant (1E-5) was added to suppress zeroes in the aggregated age 
composition data (and renormalized). 

Overdispersion in the pooled age composition sample was assessed 
by repeating the sampling process 100 times (and only for 100 simula-
tions of OM-SM combinations). This generated 100 age composition 
data sets for each year, to facilitate the calculation of variance within 
age bins across the replicates. This variation was compared to the 
sampling error that would be expected had the samples come from a 

multinomial distribution with the same sample size (and expected pro-
portions from the true catch at age). 

2.3.2. Fishery harvest 
Observed harvest in each year of the time series was simulated by 

drawing from a normal distribution with mean as the true harvest 
(aggregated across space) and a CV of 5%. 

2.3.3. Fishery catch-per-unit-effort (CPUE) 
Fishery CPUE was simulated in each year by calculating the CPUE in 

each spatial cell (catch in that cell/effort expended in that cell) and 
summing these values across space. This was done as opposed to taking 
the total catch divided by the total effort in each year because of known 
biases in CPUE when effort is not equally distributed across space 
(Walters, 2003). To obtain observed fishery CPUE, observation error 
was added to the true CPUE by drawing from a normal distribution with 
a CV of 25 %. 

2.3.4. Fishery independent survey age composition 
Fishery independent surveys were simulated by randomly sampling 

spatial cells in the matrix at the start of the year. The final 60 years of the 
time series were subject to fishery independent surveys. Within a year, a 
pre-specified number of spatial cells were to be sampled (50, SMP.5). 
The cells chosen to be sampled were randomly drawn with replacement 
from all spatial cells. Once a cell was chosen, the vulnerable numbers at 
age in a cell 

(
csa*Ny,a,c

)
were sampled using the multinomial with 

sample size equal to the total vulnerable numbers at age in a cell 
multiplied by a fishery independent catchability parameter defining the 
proportion of abundance in a cell caught per unit survey effort (SMP.6). 
The same contact selectivity was used for the survey as for the fishery 
(simple logistic, SMP. 7–8). The observed survey age composition for 
each year was then calculated by aggregating samples across cells within 
a year. Zeroes were suppressed using the same procedure described for 
fishery dependent compositions. 

2.3.5. Fishery independent CPUE 
Fishery independent survey CPUE was simulated by summing survey 

catches for each year and dividing by the total number of cells sampled 
in that year (or the total survey effort, i.e., 50). 

2.4. Estimation model (EM) 

The estimation models are age-structured assessment models that 
run for 100 years (fishing time series from OM) using ages 0-20+. The 
models are fit to 5 sources of data; (1) the fishery harvest, (2) the fishery 
CPUE, (3) the fishery age composition, (4) the fishery independent 
survey age composition, and (5) the fishery independent survey CPUE. 

The models are initialized by estimating unfished recruitment (as a 
parameter) and projecting it forward using a known natural mortality 
ogive to calculate unfished abundance at age (Table 2). Recruitment is 
estimated each year using the Beverton-Holt stock recruitment function 
(Table 3; Eq. 1.2), with annual lognormal recruitment deviations about 
the median value penalized in the likelihood (using a prespecified 
recruitment standard deviation of 0.3 from SEDAR, 2018). Recruitment 
deviations are also estimated for cohorts that make up the initial 
abundance at age. Recruitment deviations were estimated on the log 
scale and summed to zero. 

Fishery selectivity is estimated as either a two-parameter logistic 
function (Eq. 1.4b) or as a five-parameter double-logistic function (Eq. 
1.4a). This fishery selectivity option was used as a treatment in the 
simulation design (see treatment section). The five-parameter double- 
logistic functional form was chosen as it closely resembles the true 
selectivity pattern in the OM (Fig. 2), although it is still misspecified due 
to the time varying nature of true selectivity in the OM (discussed 
below). Fishing mortality for each age in each year is calculated as the 
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product of fishery selectivity and fishing intensity (fully selected fishing 
mortality, Eq. 1.5). Fishing intensity in each year is estimated as a log 
scale vector. 

Much of the observation model is quite standard in stock assessment 
and its equations are presented in Table 3. Of note is that predicted 
fishery CPUE is calculated by multiplying a fishery catchability param-
eter, which is estimated, by the mean exploitable biomass over the year 
(sum of the mean numbers at age over the year, Na,y multiplied by a 
weight at age ogive and fishery selectivity, Eq. 2.4). Fishery catchability 
is solely used in the observation model and not for the calculation of 
fishing mortality. 

2.4.1. Likelihoods 
The fishery harvest, fishery CPUE, and survey CPUE were fit with 

normal likelihoods using CVs (Table 3, Eqs. 3.1–3.3). The CV for survey 
CPUE was estimated while the CVs for harvest and fishery CPUE were 
pre specified (fixed at their OM values). Recruitment deviations were 
penalized using a lognormal likelihood (Eq. 3.4) with a pre-specified 
standard deviation on the log scale (fixed at OM value of 0.3). 

2.4.2. Composition likelihoods 
A total of ten likelihoods were tested as treatments for fitting 

composition data within this study. These included; (1) the multinomial 
weighted with the true sample size in each year (MN, Eq. 4.1), (2) the 
multinomial with effective sample sizes calculated using Francis (2011) 
weighting method TA1.8 (MNFr), (3) the robust multinomial weighted 
with true sample sizes (MNR, Eq. 4.2), (4) the robust multinomial with 
ESSs calculated using Francis (2011) weighting method TA1.8 (MNRFr), 
(5) the Dirichlet (D, Eq. 4.3), (6) the Dirichlet-multinomial with linearly 
parameterized ESS (DML, Eq. 4.4), (7) the Dirichlet-multinomial with 
saturating ESS (DMA, Eq. 4.5), and (8–10) three parameterizations of 
the Logistic-normal likelihood (Eq. 4.6) including an AR(1), an AR(2), 
and an autoregressive moving average (ARMA) parameterization of the 
variance-covariance matrix (LNAR1, LNAR2, LNARMA). Each of these 
likelihoods was included because they showed both theoretical and 
applied support from the literature (Francis, 2011, 2014, 2017; Hulson 
et al., 2011; Maunder, 2011; Thorson et al., 2017). We placed a specific 
emphasis on 3 desired qualities; whether their weighting is estimable 
within an assessment (i.e., whether they are able to account for over-
dispersion within the assessment), whether they allow for positive cor-
relations in composition data, and the number of extra parameters to 
estimate (Table 4). The DMA, DML, D, and LN likelihoods all estimate 
weighting within the assessment, the MNFr and the MNRFr estimate it 
iteratively, and the MN and MNR fix the weighting at the true sample 
size. The MN, MNFr, DMA, DML, and D all have similar 
variance-covariance structure only allowing for negative correlations 
between bins which are usually small. The LN allows for different cor-
relation structure according to the parameterization of the covariance 
(AR(1), AR(2), or ARMA), the degree of which is estimated. The MNR 
model uses the normal distribution with a multinomial variance but 
does not explicitly model correlations between bins. However, some 
correlation may arise by nature of compositions given the proportion for 
one age will influence the proportion for another age. The likelihoods 
are described in further detail within Appendix A. Each likelihood was 
used for both fishery and survey composition data and was not crossed 

Table 2 
Descriptions of parameters/symbols for the estimation models, and whether 
they were estimated, fixed, etc. If they were estimated the bounds of the esti-
mation are identified in parentheses.  

Symbol Description Estimated or Fixed 
(bounds) 

h  Steepness Fixed – 0.99 
R0  Unfished recruitment Estimated ln scale 

(10,25) 
εy  Recruitment deviations (120 parameters) Estimated ln scale 

(-10,10) 
ϖ  Descending limb asymptote of double-logistic Estimated (0,0.999) 
κ  Growth rate of ascending limb of double- 

logistic 
Estimated (-2,5) 

τ  Growth rate of descending limb of double- 
logistic 

Estimated (-2,5) 

θ1  Double-logistic ascending limb midpoint Estimated (0,20) 
θ2  Double-logistic descending limb midpoint Estimated (0,20) 
k  Fishery logistic selectivity growth rate Estimated (-2,5) 
x0  Fishery logistic selectivity midpoint Estimated (0,20) 
v  Survey logistic selectivity growth rate Estimated (-2,5) 
y0  Survey logistic selectivity midpoint Estimated (0,20) 
q  Fishery catchability Estimated ln scale 

(-20, 1) 
z  Survey catchability Estimated ln scale 

(-20, 1) 
CVH  Fishery harvest CV Fixed (0.05) 
σR  Recruitment deviations SD Fixed (0.3) 
CVI  Fishery CPUE CV Fixed (0.25) 
CVQ  Survey index CV Estimated ln scale 

(-5,2) 
fy  Fishing intensity (100 parameters) Estimated ln scale 

(-20,0) 
α  Weighting parameter for the Dirichlet (2 

parameters; 1 fishery, 1 survey) 
Estimated ln scale 
(-10,20) 

θ  Weighting parameter for the DML (2 
parameters; 1 fishery, 1 survey) 

Estimated ln scale 
(-10,20) 

β  Weighting parameter for the DMA (2 
parameters; 1 fishery, 1 survey) 

Estimated ln scale 
(-10,20) 

σAR1  Logistic-normal AR1 SD (2 parameters; 1 
fishery, 1 survey) 

Estimated ln scale 
(-5,5) 

φ  Logistic-normal AR1 Phi (2 parameters; 1 
fishery, 1 survey) 

Estimated (-1,1) 

σAR2  Logistic-normal AR2 SD (2 parameters; 1 
fishery, 1 survey) 

Estimated ln scale 
(-5,5) 

φ1  Logistic-normal AR2 Phi1 (2 parameters; 1 
fishery, 1 survey) 

Estimated (-2,2) 

ω  Logistic-normal AR2 Omega (2 parameters; 1 
fishery, 1 survey) 

Estimated logit scale 
(-10,10) 

φ2  Logistic-normal AR2 Phi2 (2 parameters; 1 
fishery, 1 survey) 

φ2 = − 1+ (2 −

|φ1| )ω  
σARMA  Logistic-normal ARMA SD (2 parameters; 1 

fishery, 1 survey) 
Estimated ln scale 
(-5,5) 

φARMA  Logistic-normal ARMA Phi (2 parameters; 1 
fishery, 1 survey) 

Estimated (-1,1) 

ψ  Logistic-normal ARMA Psi (2 parameters; 1 
fishery, 1 survey) 

Estimated (-100,100) 

Ma  Natural mortality at age Fixed – OM values 
(Supp. Table 2) 

SB0  Unfished spawning biomass Function of R0, Ma, 
Feca and εy  

Feca  Fecundity at age Fixed – OM values 
(Supp. Table 2) 

wa  Weight at age Fixed – OM values 
(Supp. Table 2) 

Na,y  Mean numbers at age over a given year Function of Na,y and 
Za,y (Eq. 2.4)  

Hy  Observed harvest in a given year Data 
Iy  Observed fishery CPUE in a given year Data 
Qy  Observed survey CPUE in a given year Data 
Ny  Sample size, or the number of fish aged in a 

year. Can also reference the effective sample 
size. 

Data  

Table 2 (continued ) 

Symbol Description Estimated or Fixed 
(bounds) 

Pa,y  Observed proportion in a fishery composition 
data set for a given age and year 

Data 

Ga,y  Observed proportion in a survey composition 
data set for a given age and year 

Data 

Nb  Number of bins in a composition data set Fixed - 21 

*Further symbols used in the LN likelihoods are given in Appendix A. 
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Table 3 
Estimation model, or spatially aggregated age-structured assessment model equations. Further description on the formulation of the Logistic-normal can be found in 
Appendix A.  

Quantity Equation 

Process Model  
1.1 Abundance at age 

Na,y =

⎧
⎨

⎩

Ry if a = 0
Na− 1,y− 1e− (Fa− 1,y− 1+Ma− 1) if 1 ≤ a < 20+

Na− 1,y− 1e− (Fa− 1,y− 1+Ma− 1) + Na,y− 1e− (Fa,y− 1+Ma) if a = 20+
1.2 Recruitment  

Ry =
4hR0SBy

SB0(1 − h) + SBy(5h − 1)
eεy εy ∼ N

(
0, σ2

R
)

1.3 Spawning Biomass  
SBy =

∑

a
Na,yFeca   

1.4a Fishery Selectivity (Double Logistic)  

sa =

[(

1 −
ϖ

(1 + e(− τ(a− θ2) ) )

)/
(
1 + e(− κ(a− θ1 ) )

)
]/

max(sa)

1.4b Fishery Selectivity (Logistic)  

sa =
1

(1 + e(− k(a− x0 ) ) )

/

max(sa)

1.5 Fishing Mortality Fa,y = safy       

Observation Model   

2.1 Predicted Catch-at-age Ĉa,y =
Fa,y

Fa,y + Ma
Na,y

(
1 − e− (Fa,y+Ma)

)

2.2 Predicted Fishery Harvest Ĥy =
∑

a
Ĉa,ywa   

2.3 Predicted Composition 
P̂a,y =

Ĉa,y
∑

a
Ĉa,y   

2.4 Predicted Fishery CPUE 
Îy = q*

∑

a
Na,y*wa*sa where Na,y =

Na,y(1 − e− (Fa,y+Ma))

Fa,y + Ma   
2.5 Survey Selectivity ga =

1
(

1 + e(− v(a− y0))
)

2.6 Predicted Survey CPUE Q̂y = z*
∑

a
ga*Na,y   

2.7 Predicted Survey Composition Ĝa,y =
ga*Na,y
∑

a
ga*Na,y   

Negative Log Likelihoods (excluding compositions)  

3.1 Fishery Harvest 
∑

y
ln
(

CVH*Ĥy

)
+ 0.5

(
Hy − Ĥy

CVH*Ĥy

)2   

3.2 Fishery CPUE 
∑

y
ln
(

CVI* Îy

)
+ 0.5

(
Iy − Îy

CVI* Îy

)2   

3.3 Fishery-Independent Survey CPUE 
∑

y
ln
(

CVQ*Q̂y

)
+ 0.5

(
Qy − Q̂y

CVQ*Q̂y

)2   

3.4 Recruitment Deviations ∑

y
ln(σR)+ 0.5

(
εy

σR

)2   

Composition Negative Log Likelihoods  

4.1 Multinomial (MN) −
∑

y
Ny
∑

a
Pa,yln

(
P̂a,y

)

4.2 Robust Multinomial (MNR) 
∑

y

∑

a
0.5log

(
(
1 − Pa,y

)
Pa,y +

0.1
Nb

)

− log

⎛

⎜
⎜
⎝exp

⎛

⎜
⎜
⎝

−
(

Pa,y − P̂a,y

)2

2
(
(
1 − Pa,y

)
Pa,y +

0.1
Nb

)/

Ny

⎞

⎟
⎟
⎠+ 0.01

⎞

⎟
⎟
⎠

4.3 Dirichlet (D) ∑

y

[

− log
(
Γ
(
αy
) )

+
∑

a
log
(

Γ
(

αy P̂a,y

))
−
(

αy P̂a,y − 1
)

log
(
Pa,y
)
]

4.4 Dirichlet-multinomial Linear (DML) 

−
∑

y

⎡

⎢
⎣

log
(
Γ
(
Ny + 1

) )
−
∑

a

(
log
(
Γ
(
Ny*Pa,y + 1

) ) )
+ log

(
Γ
(
θNy

) )

− log
(
Γ
(
Ny + θNy

) )
+
∑

a

(
log
(

Γ
(

Ny*Pa,y + θNy*P̂a,y

))
− log

(
Γ
(

θNy*P̂a,y

)))

⎤

⎥
⎦

4.5 Dirichlet-multinomial Saturating (DMA) 

−
∑

y

⎡

⎢
⎣

log
(
Γ
(
Ny + 1

) )
−
∑

a

(
log
(
Γ
(
Ny*Pa,y + 1

) ) )
+ log(Γ(β) )

− log
(
Γ
(
Ny + β

) )
+
∑

a

(
log
(

Γ
(

Ny*Pa,y + β*P̂a,y

))
− log

(
Γ
(

β*P̂a,y

)))

⎤

⎥
⎦

4.6 Logistic-Normal (LN) 
∑

y

⎡

⎣0.5(Nb − 1)*log(2π) +
∑

a

[
log
(
Pa,y
) ]

+ 0.5*log
( ⃒
⃒Vy
⃒
⃒
)
+ (Nb − 1)*log

(
Wy
)
+

(
wT

y V− 1
y wy

)

2W2
y

⎤

⎦

*Note that composition likelihoods are also used for the survey compositions, thus Ĝa,y and Ga,y can be substituted for P̂a,y and Pa,y. 
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with any other likelihood (i.e., if the fishery composition was fit with the 
Dirichlet, the survey composition was also fit with the Dirichlet). 

2.5. Additional treatments 

In addition to the choice of likelihood for composition data within 
the EM, three further treatments were included in the simulation design; 
the sample size of the fishery composition data, the degree of over-
dispersion in the fishery composition data, and the degree of process 
error between the estimation model and the operating model. These 
treatments were created by changing the OM fishing scenario, the EM 
form of fishery selectivity, and the SM fishery composition sampling 
formulation (Table 5). Each treatment is described in detail below. 

2.5.1. OM fishing specification 
We explored performance of estimation models related to two spe-

cific formulations of the spatially explicit OM with respect to fishing; a 
gravity model fishing formulation, as described in section 2.2.2, and an 
OM where fishing occurs randomly over space; however, the sampling 
still occurs as previously described. When fishing is random with respect 
to space, the fishery selectivity of a spatially explicit OM collapses to 
what is specified as the contact selectivity. Thus, an estimation model 
parameterized with a logistic fishery selectivity function fit to the OM 
that employs random fishing will be nearly correctly specified in pro-
cess; however, it should be misspecified in the observation error of the 
composition data sets (as the composition is still made up of cluster 
samples). We use the term “nearly correctly specified” because the 
spatially aggregated EM will be unable to account for process variation 
in both fish movement and effort distribution from the OM, which will 
cause some variation in fishery selectivity (not accounted for in the 
functional form, Fig. 2). Conversely, estimation models fit to the gravity 
model OM will be misspecified in process in terms of fishery selectivity 
and in observation error. We structured the simulation design in this 
fashion such that we could observe how the performance of the different 
composition likelihoods compared when there was almost exclusively 
observation error compared to when there was both process and 
observation error (and different degrees of process error). An additional 
version of the random fishing OM was run where composition data was 
sampled from the true catch at age and the survey catch at age using the 
multinomial (thus resulting in iid samples), and process variation in fish 
movement and effort distribution were turned off. An EM with logistic 
fishery selectivity which uses the multinomial likelihood for composi-
tion data should be correctly specified when fit to this random fishing 
operating model with iid catch and survey composition sampling (i.e., a 
data-generating model). 

2.5.2. EM fishery selectivity 
We varied the functional form of fishery selectivity for estimation 

models fit to the gravity model OM, from double-logistic to logistic. This 
was done to examine the effect of different degrees of process error on 
the performance of the likelihoods. The true selectivity pattern which 
emerged from the OM (gravity model OM) was time-varying, due to the 
nature of a spatially explicit model where the spatial availability 
component of selectivity becomes an emergent property of the model 
caused by fish movement and the dynamic fisher effort distribution. We 
chose a 5-parameter double-logistic functional form as this seemed a 
reasonable approximation of the true selectivity pattern which emerged 
from the OM (Fig. 2). A model with a double logistic fishery selectivity 
fit to the gravity model OM will be less misspecified than an estimation 
model using a simple logistic selectivity. Additionally, as noted previ-
ously, an estimation model with logistic fishery selectivity will be nearly 
correctly specified in its process when fit to the random fishing OM (and 
correctly specified when fit to the random fishing OM with iid sam-
pling). Hereafter we refer to EMs with double logistic fishery selectivity 
fit to the gravity model OM as the baseline scenario. We call this sce-
nario the baseline as we think it most closely approximates reality, that 

in truth selectivity will vary year to year due to unmodeled processes (in 
this case fish movement and effort distribution), and these processes can 
be time-varying (Sampson and Scott, 2011, 2012). EMs with logistic 
fishery selectivity fit to the gravity model OM are referred to as the Max 
PE (maximum process error) scenario. Finally, we refer to EMs with 
logistic fishery selectivity fit to the random fishing batch OM as the Min 
PE (minimum process error) scenario. 

2.5.3. SM fishery composition sampling 
Within the OM scenarios, using the sampling model we explored how 

varying the fishery composition sample size and the degree of over-
dispersion affected the performance of the estimation models. To do this 
we varied the percentage of total units of effort sampled each year (SMP. 
1) and the percentage of the catch sampled per unit of effort sampled 
(SMP. 2). We were specifically interested in how, independent of sample 
size, the performance of the composition likelihoods changed with 
different degrees of overdispersion in the data, and how performance 
changed as the sample size of the composition increased or decreased. 
We explored three levels of composition sample size (hereafter called 
small, medium, and large composition sample sizes), and four levels of 
overdispersion within each (Supplemental Fig. 5). These treatments are 
identified by the percentage of total effort sampled in the fishery, fol-
lowed by the percentage of the catch sampled per unit of effort sampled. 
For example, sampling 2% of the total units of effort each year and 10% 
of the catch of sampled units had a very similar fishery composition 
sample size to 1% of the total units of effort sampled and 20% of the 
catch of sampled units sampled. We refer to these treatments as “2% 10 
%” and “1% 20 %”, respectively. Although they had similar sample sizes, 
the overdispersion was more severe for the “1% 20 %” sampling sce-
nario. Overdispersion was measured by examining the variance in pro-
portions of age bins when the sampling process was repeated compared 
to the expected sampling variance from the multinomial with a similar 
sample size (Fig. 3). The small sample sizes included SM treatments of 
“0.25 % 10 %”, “0.125 % 20 %”, “0.0625 % 40 %”, and “0.03125 % 80 
%”. The medium sample sizes included SM treatments of “2% 10%”, “1% 
20 %”, “0.5 % 40 %”, and “0.25 % 80 %”. The large sample sizes 
included SM treatments of “20% 10 %”, “10 % 20 %”, “5% 40 %”, and 
“2.5 % 80 %”. The sample size treatments aged approximately 200 fish/ 
year, 2000 fish/year, and 20,000 fish/year for the small, medium, and 
large sample size levels respectively (for latter 75 % of the time series, 
Supplemental Fig. 5). These sample size levels were on average ~0.02 
%, ~0.2 %, and ~2% of the total numbers of fish caught in each year 
(Supplemental Fig. 6). Holding sample size constant, treatments with 
fewer total units of effort sampled and larger batch sizes (in terms of % of 
catch sampled per unit of sampled effort) had more severe over-
dispersion (Fig. 3). We compared within each sample size level as 
overdispersion increased, and across these three levels as the total age 
composition sample size increased. The full treatment design can be 
found in Table 5. 

2.5.4. Correlations and overdispersion observed from sampling models 
As noted above, overdispersion across age bins increased as batch 

sizes increased within each sampling model. The degrees of over-
dispersion remained similar as sample size of the composition increased 
(across batch sizes; Fig. 3). However, degrees of increase in over-
dispersion with batch sampling were not uniform across age bins or OM 
scenarios. For the gravity model OM, younger ages experienced greater 
degrees of overdispersion, which decreased to approximately age 4 for 
each SM, then increased once again to approximately age 8, and 
decreased until the plus group where it once again increased. For the 
random fishing OM, a similar pattern emerged where the young age bins 
experienced greater overdispersion (however the degree of over-
dispersion was less than that of the gravity model OM). Although in the 
random fishing OM, the plus group did not see an increase in over-
dispersion as batch size increased (as it did in the gravity model OM). 

With respect to correlations, the observation error residuals 
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(observed age composition – true age composition) correlated across 
years show a similar pattern to that described in the literature, with 
positive correlations between bins that are close together and negative 
correlations between bins that are far apart. The strength of these cor-
relations increased both as overdispersion increased (holding sample 

size constant), and as the sample size of the composition increased (for 
both OMs, Supplemental Figs. 7–8). Most of the correlations were 
stronger for the gravity model OM than for the random fishing OM 
(Supplemental Fig. 9). 

Fig. 2. Depiction of process error regarding fishery selectivity between the operating model and the estimation models. The true fishery selectivity in each year for 
the OMs is depicted in shades of blue (gravity model OM for the first two panels, and the random fishing OM for the third), which progressively get darker with the 
timeseries. The time-invariant fishery selectivity for the estimation models for each scenario is depicted in red. The contact selectivity for the spatially explicit 
operating model is specified on the first panel in green. This figure depicts the true fishery selectivity in each year for one individual OM simulation, and the 
estimated fishery selectivity using the MNFr likelihood and the 2% 10 % sampling model. 

Table 4 
Likelihoods used as treatments for fitting composition data within this study in addition to select qualities of each. The ability to account for correlations refers to 
correlation structure other than that of the multinomial (negative correlation which are generally small).  

Likelihood Acronym Estimable Weighting Parameter? Able to Account for Correlations? Extra Parameters 

Multinomial MN No No 0 
Multinomial (Iteratively weighted) MNFr Iterative No 0 
Robust multinomial MNR No No 0 
Robust multinomial (Iteratively weighted) MNRFr Iterative No 0 
Dirichlet D Yes No 1 
Dirichlet-multinomial Linear DML Yes No 1 
Dirichlet-multinomial Saturating DMA Yes No 1 
Logistic-normal AR(1) LNAR1 Yes Yes 2 
Logistic-normal AR(2) LNAR2 Yes Yes 3 
Logistic-normal ARMA LNARMA Yes Yes 3  

Table 5 
Simulation experiment design. DGM = data generating estimation model, correctly specified in both process and observation (when the multinomial is used). Min PE 
scenario is nearly correctly specified in process, misspecified in observation. The Max PE scenario is misspecified in both process and observation. The Baseline scenario 
is misspecified in both process and observation however less so than the Max PE scenario. For the random fishing model with iid composition sampling, sample size was 
equivalent to 0.25 % 10 %, 2% 10 %, and 10 % 20 % random fishing OM-SM scenarios. The term “X10′′ refers to the ten likelihoods tested.  

Scenario 
Operating Model Sampling Model Estimation Model 

OM Fishing Type SM Fishery Composition Sampling EM Fishery Selectivity EM Composition Likelihood 

DGM Random Fishinga iid sampling Logistic X10  

Min PE 
Random Fishing 0.25 % 10 % | 0.125 % 20 % | 0.0625 % 40 % | 0.03125 % 80 % Logistic X10 
Random Fishing 2% 10 % | 1% 20 % | 0.5 % 40 % | 0.25 % 80 % Logistic X10 
Random Fishing 20 % 10 % | 10 % 20 % | 5% 40 % | 2.5 % 80 % Logistic X10  

Baseline 
Gravity Model 0.25 % 10 % | 0.125 % 20 % | 0.0625 % 40 % | 0.03125 % 80 % Double-Logistic X10 
Gravity Model 2% 10 % | 1% 20 % | 0.5 % 40 % | 0.25 % 80 % Double-Logistic X10 
Gravity Model 20 % 10 % | 10 % 20 % | 5% 40 % | 2.5 % 80 % Double-Logistic X10  

Max PE 
Gravity Model 0.25 % 10 % | 0.125 % 20 % | 0.0625 % 40 % | 0.03125 % 80 % Logistic X10 
Gravity Model 2% 10 % | 1% 20 % | 0.5 % 40 % | 0.25 % 80 % Logistic X10 
Gravity Model 20 % 10 % | 10 % 20 % | 5% 40 % | 2.5 % 80 % Logistic X10  

a Process variation in fish movement and fisher effort distribution were turned off for this version of the random fishing OM. 
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2.6. Experimental design and performance metrics 

Estimation model performance was evaluated focusing on quantities 
of management interest such as the ratio of the terminal year spawning 
stock biomass to the first year (unfished level including recruitment 
deviations, hereafter termed depletion) and the exploitation rate in the 
final year of the assessment (Harvest / Biomass). Results of the perfor-
mance metrics across simulations were summarized by relative error 
(RE). We refer to these metrics as management metrics. We also evalu-
ated the absolute relative error (ARE) for the full time series of stock 
abundance. This was done in an effort to examine how well the esti-
mation models recreated operating model quantities as opposed to 
simply looking at performance metrics of management interest.  

RE = (E – T)/T                                                                                      

ARE = |Ey – Ty|/Ty                                                                               

Where E denotes the point estimate from the EM and T the true value 
from the OM. 

2.6.1. Model running and convergence 
One thousand replicates of each operating and sampling model were 

run, fit by each estimation model identified in Table 5. The operating 
models, across different sampling models, shared the same random 
number seed for population dynamics (e.g., the 2% 10 % and 1% 20 % 
model have the same population and fishery dynamics for an individual 
simulation but different fishery composition data). Estimation models 
were fit in Automatic Differentiation Model Builder (ADMB; Fournier 
et al., 2012) using penalized maximum likelihood. A model was 
considered converged if it achieved a gradient of 1E-4 (default setting in 
ADMB) and a positive definite hessian matrix. If an estimation model did 
not converge, initial parameter values in the. pin file were jittered and 
the estimation model was fit again. This process was repeated a 
maximum of 10 times, after which a model was considered not 
converged. For likelihood treatments which included iterative 
reweighting, effective sample sizes were considered converged once the 
mean deviation between runs was less than 5 (i.e., mean(ESS(i) - ESS 
(i-1)) < 5). This convergence rule for ESS was arbitrarily chosen as it 
has been noted that there is technically no correct way to do this and 
that it usually takes large changes in ESS to result in appreciable changes 
in model outputs (Maunder, 2011; Francis, 2017). Maximum likelihood 

Fig. 3. Overdispersion in age composition for each OM scenario (columns) and sampling models (levels of sample size as rows and different levels of overdispersion 
as colored boxplots within each panel). These metrics describe the variance, across re-sampling, in the observed age composition as a percentage of the variance that 
would be expected from multinomial sampling given the number of samples taken, for a reference year in the fishing time series (Year 75). The resampling was done 
for 100 of the 1000 OM simulations, and 100 resampling replicates were run. Resampling refers to repeating the sampling process for fishery composition which 
includes the number of units of effort sampled from each port, the specific spatial cells that will be sampled (the cell that the unit of effort fished), and the sampling of 
the catch-at-age from those cells. Shown are the interquartile ranges across simulations. 
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Fig. 4. Residual correlations and expected correlations for an estimation model fit using the LNAR1 likelihood. Residual correlations describe correlations in re-
siduals across years for a given simulation, and the median taken across simulations. The expected correlations are simulated correlations that would be expected 
from a Logistic-normal AR(1) distribution if the sampling process were repeated. They were generated by drawing, for each year within a simulation, a composition 
from the LNAR1 distribution parameterized using parameter estimates (σ, φ, and expected composition) from that year and specific simulation, and subtracting from 
the resulting composition draw the expected proportions for that year. These draws were then correlated across years and the median taken across simulations. This 
figure represents results from the 2% 10 % EMs fit using the LNAR1 likelihood. 
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Fig. 5. Residual correlations and expected correlations for an estimation model fit using the DMA likelihood. Residual correlations describe correlations in residuals 
across years for a given simulation, and the median taken across simulations. The expected correlations are simulated correlations that would be expected from a 
Dirichlet-multinomial distribution (saturating parameterization) if the sampling process were repeated. They were generated by drawing, for each year within a 
simulation, a composition from the DMA distribution parameterized using parameter estimates from that year and specific simulation, and subtracting from the 
resulting composition draw the expected proportions for that year. These draws were then correlated across years and the median taken across simulations. This 
figure represents results from the 2% 10 % EMs fit using the DMA likelihood. 
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estimates for each estimation model were saved and compared to 
operating model values. In addition to performance metrics/statistics, 
we also considered the computational intensity, practicality (in terms of 
iterative re-weighting), and percentage convergence in assessing model 
performance. 

3. Results 

The different parameterizations of the Logistic-normal models pro-
duced very similar results to one another as did the Dirichlet and the 
parameterizations of the Dirichlet-multinomial models. To be concise, 
we only present results regarding management metrics and ARE of 
abundance for the DMA and the LNAR1 parameterizations. Results for 
the Dirichlet, DML, LNAR2, and LNARMA can be found in Supplemental 
files (Supplemental Figs. 10–14). 

3.1. Computational intensity 

The estimation models which included the Logistic-normal likeli-
hoods (LNs) were the most computationally intense. Of the LNs, the 
ARMA parameterization was the most computationally intense, which 
frequently took ~80 h for 1000 EMs. The AR(1) and AR(2) parameter-
izations were also very computationally intense, taking approximately 
50 h for 1000 EMs (with the AR(2) model taking slightly longer). The 
computational intensity of the estimation models that utilized the 

Logistic-normal likelihoods was likely due to the need to automatically 
differentiate the variance covariance matrix which has dimensions year 
by age by age (100 × 21 × 21). The iteratively weighted multinomial 
and robust multinomial each took averages of ~7 h to complete 1000 
EMs. The DMA models took ~6 h, the DML ~4.5 h, while the Dirichlet 
models took averages of ~3 h. The multinomial and robust multinomial 
models that were weighted using the sample size of the composition data 
were the least computationally intense with average run times of ~2.5 h 
for 1000 EMs, respectively. 

3.2. Convergence 

Almost all EMs converged within the Baseline and Max PE scenarios 
(Supplemental Fig. 13), with the most nonconvergence attributed to the 
DML models (40/1000 for 0.25 % 10 % for the Baseline, 30/1000 for 0.5 
% 40 % for Max PE). For the Min PE and data generating model sce-
narios, many EMs which used the DML did not converge. Convergence 
for the DML increased as sample sizes decreased. Further, within each 
level of sample size for the Min PE, convergence increased as the batch 
size increased (as overdispersion increased). As an example, for large 
sample sizes, convergence increased from ~65 % of simulations for 
batch sizes of 10 %, ~75 % batch sizes of 20 %, >90 % for batch sizes of 
40 %, to >99 % for batch sizes of 80 % (Supplemental Fig. 13). 

Fig. 6. Variance in the residuals for fishery composition (row 1), survey composition (row 2), and the estimated (as a parameter) CV of the survey index (row 3). 
Shown are the medians across simulations. The variances of compositions were summed across bins and logged to aid in visualization. Colors denote different batch 
sizes. Columns of the figure denote different scenarios. Within each individual panel, the 3 distinct groups of points represent different levels of sample size (small, 
medium, large). 
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3.3. Residual correlations and effective sample size 

The only estimation models that allowed for correlation structure of 
the residuals different from that of the multinomial (negative correla-
tions) and the MNR (no apparent correlations) were the estimation 
models using the Logistic-normal likelihoods. They did not recreate the 
correlations in fishery composition residuals exactly, however, they did 
show a similar pattern, much more so than the other likelihoods (Figs. 4, 
5). 

For each scenario, the variance of the fit to the fishery composition 
data was much greater for the LN models than for the others, as was the 
variance of the fit to the survey composition data (Fig. 6). With respect 
to ESS, for Min PE the DMA models only down-weighted the fishery 
composition a small amount at the most extreme batch sizes. 
Conversely, the MNFr and MNRFr models did down-weight the fishery 

composition data in the Min PE scenario, and ESS as a proportion of the 
raw sample size decreased as batch size increased (Fig. 7). The ESS as a 
proportion of the raw sample size did not seem to decrease as the sample 
sizes increased in the Min PE scenario. For the Baseline, fishery ESS as a 
proportion of the true sample size for each model (DMA, MNFr, and 
MNRFr) decreased as sample size increased and also decreased as batch 
sizes increased. The DMA models estimated larger fishery ESS than did 
the MNFr and MNRFr models. For Max PE, the same occurred where 
fishery ESS as a proportion of the true sample size decreased as sample 
size and batch sizes increased. However, where the DMA models esti-
mated larger fishery ESSs than did MNFr at small sample sizes they 
estimated smaller ESSs than the MNFr at large sample sizes. The MNRFr 
model estimated the smallest ESS for fishery composition for each 
sample size level in the Max PE scenario. 

With respect to the ESSs estimated for the survey compositions, for 

Fig. 7. Effective sample sizes, as a proportion 
of the raw sample size, for the Dirichlet- 
Multinomial and iteratively-weighted multino-
mial models. Depicted are the medians across 
simulations and the medians then taken across 
years in the time series. The first column pre-
sents effective sample sizes for fishery compo-
sition data and the second for survey 
composition, where the rows depict different 
scenarios. The three groups of points within 
each panel (groups of 4) depict the three levels 
of sample size, which increases from left to 
right. Within each group the points on the left 
contain smaller batch sizes and to the right 
larger batch sizes (more overdispersed).   
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Fig. 8. Results for fit to Data-Generating model. This describes a random fishing OM with multinomial sampling of fishery catch-at-age and survey catch-at-age (and 
no process variation in fish movement or fisher effort distribution) fit by EMs with logistic fishery selectivity. The composition sample sizes are equivalent to the 
random fishing sampling model scenario 0.25 % 10 % for the small level, 2% 10 % for the medium level, and 10 % 20 % for the large level. Points denote medians 
where lines denote interquartile ranges across simulations. 

Fig. 9. Management metric results for each scenario (rows) and each sampling model, where the composition sample size increases by column from left to right. 
Points denote medians where lines denote interquartile ranges. Filled circles refer to depletion and open circles to exploitation rate. Within each panel, groups of 4 
denote the levels of overdispersion, which increases from left to right (as batch size increases). Note that the y-axes can differ between the panels. 
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each scenario the DMA ESS was near ~90 % of the true sample size, 
where it was between 30–50 % of the true sample size for the MNFr and 
MNRFr models (and decreased from Min PE to Baseline to Max PE). 

3.4. Data generating model 

The MN, MNFr, and DMA models were each effectively unbiased 
when fit to data simulated from the random fishing operating model 
with iid catch composition sampling (and no process variation in fish 
movement and effort distribution) at each level of sample size (Fig. 8). 
The LN model was the most biased at small and medium sample sizes 
followed by the MNR and MNFr models. As sample size increased each of 
the LN, MNR, and MNRFr models improved in performance such that 
they were effectively unbiased at large sample sizes. 

3.5. Minimum PE 

For the scenarios where the EMs specified a simple logistic fishery 
selectivity and were fit to data simulated from an OM with random 
fishing (where the process model is nearly correctly specified), the MN, 
MNFr, and DMA models were least biased in management metrics and 
most accurate for abundance across most sampling models, followed by 
the MNR and MNRFr, and finally the LN models (Figs. 9, 10). As the 
sample size of the composition data increased, the performance of all 

models improved, such that the LN models were nearly unbiased at large 
sample sizes, and almost as accurate for the abundance metric. There did 
not seem to be a strong effect of increasing the degree of overdispersion 
while controlling for sample size on the rankings of the likelihoods, 
however across many models, especially at small sample sizes, accuracy 
decreased as batch sizes increased. 

3.6. Baseline scenario 

For the scenario where the EMs that specified a 5-parameter double- 
logistic fishery selectivity were fit to data simulated from the gravity 
model OM, the best performing likelihoods (in terms of relative error) 
depended on the composition sample size. When the sample size was 
small, the MN, MNFr, and DMA were least biased in estimating man-
agement metrics. As sample size increased, the LN improved in perfor-
mance relative to the other likelihoods such that it was the least biased 
at large sample sizes (for most sampling models). As the sample size of 
the composition data increased, the bias in management metrics of the 
MN model increased, such that it was the most biased at large sample 
sizes. There did not seem to be any large change in the relative ranking 
of management metrics for the different EMs when controlling for 
sample size and increasing overdispersion. 

All EMs had similar ARE of abundance in each year of the time series, 
with exception to the LN model at small and medium sample sizes. The 

Fig. 10. Absolute relative error for abundance in each year of the time series. Rows depict scenarios whilst columns depict different fishery composition sample sizes, 
where the sample size increases from left to right with each column of plots. Points denote medians where lines denote the interquartile range of simulations. Within 
each panel, groups of 4 denote the levels of overdispersion, which increases from left to right (as batch size increases). Note that the y-axes can differ between 
the panels. 
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MN, MNFr, and DMA were as accurate as one another at small and 
medium samples sizes, however at large sample sizes the MNFr was 
slightly more accurate. The MNR and MNRFr models were slightly less 
accurate than the MN, MNFr, and DMA for each level of sample size. The 
accuracy of the LN model improved as sample size increased, such that it 
was ranked second only to MNFr at large sample sizes. There did not 
seem to be a strong effect in the ranking of the different EMs when 
controlling for sample size and increasing overdispersion, however 
across most models, accuracy decreased as batch sizes increased. 

3.7. Maximum PE 

For the scenarios where the EMs that specified a simple logistic 
fishery selectivity were fit to simulated data from the gravity model OM, 
the DMA was least biased in estimating management metrics at small 
sample sizes, and the LN was least biased at medium and large sample 
sizes. An exception to this was for depletion at medium and large sample 
sizes, where the LN was slightly outperformed by the DMA (and MNR for 
large sample sizes). The DMA model was the next least-biased EM for 
both management metrics at medium and large sample sizes. As sample 
size of the fishery composition increased, the performance of the MN 
and MNFr models decreased, however the decrease in performance was 
much more pronounced for the MN. There did not seem to be a large 
change in the ranking of the different EMs when controlling for sample 
size and increasing overdispersion. However, the MNFr model did 
experience less bias as overdispersion increased for each level of sample 
size. 

When examining the results with respect to the ARE of abundance in 
each year of the time series, the MNR and MNRFr models outperformed 

all other models for each sample size formulation. This was followed by 
the MNFr and DMA models, which had similar accuracy, and then the 
MN and LN models. The accuracy of the LN models improved from small 
to medium sample sizes, however worsened from medium to large 
sample sizes (Figs. 10, 11). There did not seem to be an observable effect 
on ARE for each EM when controlling for sample size and increasing 
overdispersion. 

4. Discussion 

4.1. Overview 

Within our study, the degree of process error and the sample size of 
the composition data had a much greater effect on the relative ranking of 
the likelihoods than did the degree of overdispersion in the data. Spe-
cifically, with substantial process error present and a medium to large 
sample size, the LN models performed relatively well with regards to 
management metrics. Conversely, when the process was correctly 
specified (or nearly so), or the sample size was small, the DMA models 
performed comparatively well. However, we did find some discrep-
ancies between results of performance criteria in the final year of the 
model (management metrics) and results of stock abundance in each 
year encompassing the whole time series. 

4.2. Overdispersion effect 

We did not see a substantial effect of increasing the degree of over-
dispersion in the data while controlling for sample size in the rankings of 
the different likelihoods. Although one can observe consistent minute 

Fig. 11. Relative error results for abundance in each year of the time series. Each row depicts a different scenario and each column a different composition sample 
size. The lines depict medians whereas the shaded region denotes the interquartile range across simulations. The only EMs shown in this graphic are the MNFr, DMA, 
and LNAR1 models. Solely the 10 % batch sizes are shown in this figure. Note that in each of the plots the DMA and MNFr models mostly overlap and thus the MNFr is 
largely invisible behind the DMA. 
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differences in the medians of performance metrics when overdispersion 
increased, these results did not appreciably change the relative rankings 
of the different likelihoods. When the EMs were fit without survey 
composition (but the survey index remained), the results remained 
largely the same (Supplemental Figs. 20–21). Thus, it is unlikely that this 
effect was due to informative survey composition data overcoming the 
overdispersion in the fishery composition data. Rather, it may be that 
even the largest batch sizes are sufficiently informative on the age 
composition of the catch, and/or coupled with informative indices and 
catch data, do not negatively affect assessment point estimates. Maunder 
(2011) notes that estimators of model parameters can often remain 
unbiased in the presence of overdispersion. However, increased over-
dispersion as a result of observation error is likely to affect uncertainty 
estimates from the stock assessment, and thus confidence intervals, 
hypothesis tests, and management strategy evaluations could be 
impacted. 

4.3. Why are Likelihoods performing the way they are? 

One of the main effects of changing likelihoods within the estimation 
models is to change how the model weights composition data coming 
from the fishery and the survey relative to other components. The effect 
of a smaller/larger weight given to a composition data set can be 
thought of as an increase/decrease in the composition data’s share of the 
total error (Francis, 2017). When a composition data set is increased in 
relative weight, the EM will emphasize more closely fitting those data (i. 
e., less variation in residuals), at the expense of fitting other data. This 
manifests into estimation model performance by affecting the ability to 
estimate parameters accurately. For all models with the exception of LN, 
the weighting of composition data sources can be examined with 
recourse to ESS. In an effort to compare the weighting of the LN likeli-
hood with the others, we examined the variance of the residuals in 
addition to the correlation structure of the residuals with what would be 
expected given the likelihood. 

What seems to occur is that the LN model down-weights both the 
fishery composition and the survey composition more so than the other 
likelihoods (per the variance in the residuals, Fig. 6). One pattern that 
seems evident is that the model with the least amount of bias in fishing 
mortality generally achieves the best ranking among management 
metrics (Supplemental Figs. 18–19). We suspect that, when there is 
substantial process error, as in the Baseline and Max PE scenarios, the LN 
model is able to target the influence of individual composition data 
points more effectively through the parameterization of its variance- 
covariance matrix. It may then be able to better account for influential 
data points through recruitment deviations and fishing mortality. In 
contrast, the DMA and MNFr models must target or weight the entire 
composition at once. The exception to this is with the Min PE scenario, 
where process error was minimized and thus the pattern of the residuals 
changed (more similar to those expected from the DMA likelihood) and 
degree of correlations in residuals decreased (Figs. 4, 5). In this case, the 
DMA and MNFr models likely weighted fishery composition data more 
appropriately. It seems the LN also requires a large enough sample size 
for sufficient characterization of the variance-covariance matrix, as its 
performance relative to the other likelihoods improved as sample size 
increased for each scenario. This was especially evident in the Min PE 
and data-generating model scenarios, where the LN model was effec-
tively unbiased given a sufficiently large sample size. 

Although the LN models performed best with moderate to large de-
grees of process error and sufficient sample size with regards to man-
agement performance metrics, when examining results for abundance of 
the full time series of the assessment they performed more poorly rela-
tive to EMs which employed some of the other likelihoods. Their per-
formance improved with sample size for the Baseline and Min PE 
scenarios to a point where they were as accurate as the MNFr and DMA 
models in the Baseline and nearly as accurate for Min PE, however 
decreased in performance from moderate to large sample sizes for Max 

PE. The decrease in performance for the Max PE scenario may be 
occurring because the estimate of unfished recruitment for LN becomes 
more biased relative to other models as the sample size of the compo-
sition increases (Supplemental Fig. 15). This is also the reason why the 
LN models did not improve in their estimation of depletion relative to 
the other EMs as the sample size of the composition increased (where 
they did for exploitation rate). 

4.4. Process error 

Given that fishery selectivity in the estimation models is mis-
specified, many of the effects on model performance manifested them-
selves through bias in fishing mortality and fishery catchability, and to a 
lesser extent, other parameters of the EMs (unfished recruitment, survey 
catchability, etc.). Misspecification of fishery selectivity has long been 
known to be consequential in stock assessment (Martell and Stewart, 
2014; Thorson and Taylor, 2014; Punt et al., 2014), and some recent 
studies have specifically examined the role that weighting composition 
data plays with regards to misspecification of fishery selectivity (Stewart 
and Monnahan, 2017; Xu et al., 2020). Stewart and Monnahan (2017) 
examined how under-, over-, or right-weighting composition data 
affected stock assessment performance in the face of different degrees of 
process error and whether steepness and natural mortality were esti-
mated. Stewart and Monnahan (2017) did not attempt to estimate 
composition weights within assessments but rather fixed them a priori. 
They found that when variation in selectivity was not accounted for, 
underweighting the composition led to less bias in spawning biomass 
than right- or overweighting the data. Our study suggests a similar 
finding, where decreased effective sample size led to less bias in man-
agement metrics and abundance over the time series for scenarios with 
significant process error in selectivity. Another study, Xu et al. (2020), 
compared the performance of iteratively weighting the multinomial 
using algorithm TA1.8 from Francis (2011) and the McAllister and 
Ianelli (1997) method to using the Dirichlet-multinomial likelihood for 
composition data within stock assessment. They examined performance 
across degrees of overdispersion and model misspecification with regard 
to time-varying selectivity. They found that, for a case similar to ours 
where the estimation model assumed constant selectivity however the 
operating model specified time-varying selectivity, each method per-
formed similarly in mean ARE for final-year spawning biomass. How-
ever, assessments that attempted to estimate time-varying selectivity 
demonstrated that the Dirichlet-multinomial outperformed both itera-
tive methods when time varying selectivity or overdispersion was pre-
sent. In addition, Xu et al. (2020) found that data weighting in many 
cases had a large impact on the estimation performance of assessment 
models with correctly specified selectivity. Our findings with regard to 
the Min PE scenario and the data generating scenario support this 
finding, that even with a correctly or nearly correctly specified model, 
likelihood choice is consequential. In our study this was likely due to the 
observation error structure in the data being most similar to the multi-
nomial (iid), given each model which did not include this sampling 
structure (outside of MN, MNFr, and DM) performed worse in these 
scenarios. 

Another notable study with respect to how model misspecification 
affects composition likelihood choice, Maunder (2011), simulated a 
variety of aspects of misspecification such as ageing error, variation in 
natural mortality, variation in selectivity, misspecified age-specific 
natural mortality, and fish schooling. Although Maunder (2011) did 
not examine the Dirichlet-multinomial or the Logistic-normal likeli-
hoods, he did find that methods which estimated ESS, either iteratively 
or within the model, improved results only when there was annual 
variability in selectivity (and notes that the error was still large). 
Maunder (2011) further found that it takes large changes in ESS to 
materially affect assessment model fits, noting that only when ESSs were 
1/5 of the true sample size did models that estimated the ESS improve 
results. Direct comparisons between our study and Maunder (2011) are 
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difficult to make, since our likelihoods were misspecified in all but the 
data generating model scenario, given the nature of how we sampled 
from the spatially explicit OM (observation error will not match exactly 
with what any of the likelihoods expect). However, we do note that for 
the methods that estimated ESS, when there was substantial process 
error, performance of management metrics improved relative to models 
with fixed sample size as the sample size of the fishery composition 
increased. 

4.5. Implications 

Data weighting and composition likelihood choice cannot fix model 
misspecification. Nonetheless, our study suggests that some composition 
likelihoods perform better than others depending on the details of the 
scenario and the metric used for evaluation. 

What does this imply? The answer depends on which scenario 
mimics a real-world situation best. We would always like to think that 
our models are correctly or nearly correctly specified, and in that case, it 
seems the Dirichlet-multinomial likelihood or the multinomial weighted 
with TA1.8 is the most appropriate. However, in reality, there will al-
ways be unmodeled processes not accounted for, and these processes are 
unlikely to be symmetric white noise deviations (as they were in Min PE 
case). It may be most practical to choose a likelihood that is robust 
across a suite of likely scenarios. In that sense, we find our study pares 
the choice down to the DM or the LN. The LNs were robust to scenarios 
with process error for management metrics and performed reasonably 
well with minimum process error and large sample sizes. However, with 
small and moderate sample sizes for composition data and a correctly 
specified process, the performance of the LN was poor for both man-
agement criteria and abundance over the time series. This is worrisome, 
as the goal is to specify the process model correctly, and we may not 
always have large sample sizes to overcome this hurdle. A close 
contender is the Dirichlet-multinomial likelihood, which was somewhat 
robust to process error and nearly unbiased when the process was 
correctly specified. 

Previous research (Thorson et al., 2017) had found that 
Dirichlet-multinomial likelihoods performed similarly to an iterative 
reweighting procedure initially developed by McAllister and Ianelli 
(1997), although it has been suggested that the McAllister and Ianelli 
(1997) method overweights the composition data, and that method 
TA1.8 usually produces a lower effective sample size (Francis, 2017), as 
it was formulated to make the weights consistent with the size of the 
errors in mean age as opposed to individual composition proportions 
(thus implicitly accounting for correlations). In our study, it seems that 
the Dirichlet-multinomial was down-weighting mostly for process error 
and not as much for observation error (overdispersion and correlations 
in data) compared to TA1.8, evidenced both by fishery ESS and survey 
ESS, where there was little error specified in the survey process. In 
contrast TA1.8 was accounting for both, however not down-weighting as 
much as the DM when there was severe process error. We believe this 
may be occurring as TA1.8 could be losing some information on 
covariation between bins by calculating the error in mean age, and thus 
residuals in mean age may be consistent with ESS where residuals in 
individual bins imply more overdispersion for the DM. The chances of 
this occurring likely increase as process error increases, given expected 
values may be less likely to match with observed, and depending on the 
residual structure the errors in mean age may remain consistent with 
ESS where the residuals in individual bins are overdispersed, leading 
TA1.8 to estimate a larger ESS than the DM. 

Although the MNFr did outperform the DM with moderate process 
error (Baseline scenario) and seems to be better able to account for 
overdispersion and correlations in the data (as evidenced by its ESS 
across scenarios), the DM likelihood offers several advantages over any 
iteratively weighted likelihood (Thorson et al., 2017), the most impor-
tant of which, in our view, is eliminating the need for the iterative 
procedure. This should allow for more efficient exploration of 

alternative models, retrospective analyses, sensitivity analyses, and a 
more efficient run of the model itself (e.g., Bayesian estimation). We find 
these advantages outweigh benefits of iterative reweighting using al-
gorithm TA1.8. Overall our study suggests that with small to moderate 
sample sizes, the Dirichlet-multinomial is the best choice. With larger 
composition sample sizes, it may be prudent to consider the 
Logistic-normal. The Logistic-normal likelihood may also be valuable to 
consider when modeling length composition data, given they often 
exhibit very strong correlation structure (Hrafnkelsson and Stefansson, 
2004; Miller and Skalski, 2006), and are generally much more numerous 
than age data. In other systems/stocks, an assessment scientist may 
consider sample sizes as they relate to this study using the raw sample 
size (Supplemental Fig. 5) and the percentage of the total catch sampled 
in each year (Supplemental Fig. 6). Another potential use of the 
Logistic-normal may be as a diagnostic tool to identify significant pro-
cess error. Given that the LN and the DM performed similarly at large 
sample sizes when there was little process error, and the LN out-
performed the DM at large sample sizes when there was substantial 
process error, it stands to reason that if one has a large enough sample 
size for composition data, differences in model fit between the LN and 
the DM may suggest a large degree of process error. 

4.6. Comparison among the parameterizations 

Within our study, the different parameterizations of both the 
Logistic-normal and the Dirichlet-multinomial likelihoods (including 
the Dirichlet) performed similarly to one another. Given the difference 
in performance between LN parameterizations was effectively negligible 
(Supplemental Figs. 10–12), we recommend the LNAR1 parameteriza-
tion as it is more parsimonious than the others and was the least 
computationally intense. The LN formulations we tested solely differed 
in how they modeled covariance between bins, and it should be noted 
that the LN can be parameterized to allow σ to vary with age or length 
bins (e.g., making σ a linear function of bin, Francis (2014)). This may 
improve performance given variance of compositions has been shown to 
be bin dependent (Fig. 3; Crone and Sampson, 1997; Hrafnkelsson and 
Stefansson, 2004; Miller and Skalski, 2006). In addition, we explored 
but three parameterizations of the variance-covariance matrix for the 
LN, and these are by no means exhaustive. We encourage the exploration 
of other parameterizations with respect to correlations between age-
s/lengths, sex, and/or years. 

As for the Dirichlet and Dirichlet-multinomial parameterizations, the 
DMA slightly outperformed the DML when there was a large amount of 
process error and did not run into the convergence issues that plagued 
the DML. Thorson et al. (2017) notes that the Dirichlet-multinomial 
likelihood converges to the value of the multinomial likelihood as β or 
θN (weighting parameters) approach infinity. This parameter was not 
identified well when the DML estimation models were applied to the Min 
PE scenario (in which the process was nearly correctly specified), which 
likely led to the convergence issues noted in the results. The same 
convergence issues occurred in the data-generating model scenario. This 
suggests that the DML may have been collapsing to the multinomial 
distribution. The Dirichlet likelihood also produced very similar results 
to those of the Dirichlet-multinomial. Between these two likelihoods, we 
recommend use of the Dirichlet-multinomial likelihood, as within our 
study when the process was nearly (Min PE scenario) or completely 
correctly specified (Data generating model scenario), the 
Dirichlet-multinomial outperformed the Dirichlet likelihood. In addi-
tion, the Dirichlet performed worse in all scenarios at small sample sizes. 
The Dirichlet-multinomial likelihood also experiences a theoretical 
advantage over the Dirichlet in that the weighting parameter of the 
Dirichlet (α) is unbounded (Thorson et al., 2017), which could lead to 
overweighting (meaning the weight could theoretically be larger than 
the sample size), where the DM models are bounded by the sample size 
of the composition data. However, this property of the Dirichlet could be 
an advantage or used as a diagnostic tool when methods to set input 
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sample size prior to the assessment are used (discussed below). If the ESS 
for the Dirichlet were estimated to be greater than the input sample size, 
this may suggest error in the method used for setting input sample size. 
In these cases, the property of the DM models where the ESS cannot 
exceed the input sample size may be a disadvantage. 

As for the robust multinomial, its performance varied widely across 
treatment levels, and thus patterns in performance are difficult to glean. 
One pattern that seems to have emerged is that, where the MNFr was 
almost always an improvement on the MN weighted with the raw 
sample size, the same was not true for the MNR and MNRFr. Iteratively 
weighting the robust multinomial may not have the same desired effect 
as doing so on the multinomial. This may be because the MNR is already 
formulated to be robust to certain deviations in composition data, as it 
was originally formulated to aid in keeping outlier composition data 
points from unduly influencing model fit (Fournier et al., 1990), and 
thus is already down-weighting the composition to a certain degree. The 
performance of the MNR and MNRFr models were, in all but a few cases, 
worse than either the MNFr or the DM; for this reason we suggest the 
latter likelihoods. Robust multinomials may perform better with length 
data as opposed to age data, or simply in case studies with more outlier 
composition data points. We did not explicitly model outliers in our 
simulations, and performance of the MNR models may have improved 
relative to the others had we done so, as robust likelihoods have been 
shown to improve estimates in their presence (Chen and Paloheimo, 
1995; Chen and Fournier, 1999; Chen et al., 2000). 

4.7. Caveats and alternative modeling 

We tested 10 likelihoods and associated parameterizations for 
composition data in this study, 6 versions of which estimated weighting 
within the stock assessment. This list is by no means exhaustive, and 
there are additional candidate likelihoods with estimable weighting that 
can be found in Maunder (2011), and likely among other publications. 
The likelihoods and associated parameterizations tested in this study 
reflect the authors’ conception of the most promising candidates for 
modeling composition data with emphasis on correlations and over-
dispersion in observed data and model residuals. It is unlikely that the 
likelihoods tested by Maunder (2011), but not tested in this study, would 
provide substantial improvements over the Dirichlet or 
Dirichlet-multinomial used in this study, as Maunder (2011) found that 
the Dirichlet was least biased in estimating the true effective sample size. 

It is important to note that within our study, we chose to suppress 
zeros in the composition data. Of the likelihoods tested in this study, the 
Logistic-normal and the Dirichlet are not able to incorporate zero ob-
servations. We take the position that most zero observations arise by 
chance (happenstance zeros; Francis, 2014), and that these observations 
could have been non-zero (for example taking another sample, i.e., 
arising via observation error). We follow the recommendations of 
Francis (2014) that happenstance zeros (those arising via observation 
error) be replaced by a small constant, and that zeros on the ends of the 
composition (zeros that could conceivably be true zeros) be dealt with 
by tail compression. We encourage further research on the effect of 
suppressing or allowing zeros within composition data. 

Another issue brought forth in the literature with regard to likeli-
hood choice for composition data is that of sexed compositions (Francis, 
2014). This mainly presents an issue for the Logistic-normal likelihood 
as the correlation structure between bins becomes more complicated 
with the age and sex dynamic. Francis (2014) suggests two potential 
approaches to deal with sexed compositions. The first is to find a 
two-dimensional approach to including correlations within the 
variance-covariance matrix of the Logistic-normal, a potential candidate 
being the multivariate normal (Maunder, pers comm). The second is to 
separate the data sets such that there is an age composition and also a 
sex composition data set, and to choose a likelihood with appropriate 
structure for each (although consideration should be given to avoid 
double counting of samples). Further research may again be warranted 

on each of these approaches. 
In our study, we chose to focus on effects of likelihood using a fixed 

effect approach. An emerging topic in the fisheries modeling literature 
has been the introduction of state-space modeling to separate process 
variation and observation error (Aeberhard et al., 2018). Accounting for 
process variation would seem to tilt the estimation model closer to 
correct model specification, which from the results of our study would 
imply the Dirichlet-multinomial may be a prudent likelihood choice. 
However, as Francis (2014) notes, we can hope to account for some 
process variations such as year to year variation in recruitment and 
selectivity, but we may not be accounting for model misspecification 
such as incorrect functional forms, fixed parameters, etc. In addition, in 
this study we chose not to model time varying selectivity. This is another 
recent topic in stock assessment (Martell and Stewart, 2014; Punt et al., 
2014; Xu et al., 2019, 2020; with potential for applying state-space 
methods, see Nielsen and Berg, 2014). The resulting selectivity 
emerging from the spatially explicit operating model confirms that 
spatial structure in the population and regarding how the fishery oper-
ates can create the realized selectivity to be dome shaped, even if the 
contact selectivity is asymptotic, and that time-invariant selectivity is 
likely an exception rather than the norm. These results suggest, as many 
other studies previously have (Sampson, 2014; Sampson and Scott, 
2011, 2012; Waterhouse et al., 2014), that time invariant and asymp-
totic selectivity should be modeled with caution in fisheries stock as-
sessments. Incorporating a suitable formulation of time-varying 
selectivity may have pushed the estimation models closer to correct 
specification, which would again imply the Dirichlet-multinomial may 
be a prudent likelihood choice. However, the incorrect specification of 
time varying selectivity may also lead to increased model mis-
specification and process error and thus could change the choice of 
which composition likelihood to employ. 

Composition data within stock assessment are known to influence 
the estimation of natural mortality (Lee et al., 2011), and estimating 
natural mortality within an assessment model may have cascading ef-
fects on the estimation of other parameters such as unfished recruitment, 
fishing mortality, and selectivity. For simplicity, we chose to fix natural 
mortality in this study. It is conceivable that results of our study may 
have differed had we attempted to estimate natural mortality. More 
research is needed to determine whether estimating natural mortality 
within stock assessment influences which composition likelihood would 
perform best with respect to process error, composition sample size, and 
overdispersion in composition data. 

One might be hard-pressed to find a contemporary assessment model 
that weighted the multinomial likelihood using the raw sample size of 
fish aged. We used this approach for one of our treatments as we found 
this provided a good theoretical baseline for comparing likelihoods. In 
addition, if an assessment biologist specifies the multinomial as the 
likelihood for composition data, that inherently assumes the samples 
were independent and identically distributed and thus should be 
weighted using the raw sample size. Any other method to weight the 
multinomial is ad-hoc and admits to violating the iid sampling 
assumption. Some common methods of setting input sample size or ESS a 
priori include bootstrapping (Stewart and Hamel, 2014), using the 
number of sets or hauls sampled (Pennington and Volstad, 1994; Helle 
and Pennington, 2004), setting fixed values (Methot, 2000; Fournier and 
Archibald, 1982), or simply using the number of fish sampled, but not 
exceeding a cap (Methot, 1989). Although these methods would have 
likely outperformed the multinomial weighted with the true sample size 
in our study, none of these methods has the ability to account for process 
error, hence the need for iterative re-weighting or a likelihood that is 
able to be weighted within the assessment (and thus use of these 
methods is unlikely to have altered our conclusions). There has also been 
some recent research on spatiotemporal standardization of composition 
data (Thorson, 2014; Thorson and Haltuch, 2019; Thorson et al., 2020; 
Maunder et al., 2020). This would likely have a similar effect of 
providing an input sample size lower than the true sample size, in 
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addition to more appropriately characterizing the annual aggregated 
composition of the catch. However, these methods are still unable to 
account for process error. We encourage further research on how 
spatiotemporal standardization of composition data may influence the 
relative performance of different likelihoods. It may be that appropri-
ately standardized composition data results in the multinomial per-
forming better than, or as well as the other likelihoods examined in this 
study. 

In addition, we note that we were fitting two different composition 
data sets (fishery and survey) that arose from two different sampling 
processes within each EM using the same likelihood. We did not 
implement a full factorial design where all likelihoods would be crossed 
for fishery and survey data due to time and computational constraints. 
Our results with respect to composition sample size and process error 
suggest that EM performance may have improved had we chose to model 
each using different likelihoods. A mixed approach could improve 
assessment performance, such as utilizing the Logistic-normal for fishery 
composition data with sufficient sample size that exhibits strong corre-
lation structure and less confidence in correct process specification, and 
the Dirichlet-multinomial for survey composition data where the correct 
process may be specified more confidently and the sample size smaller. 

Finally, we solely examined one species life history and movement 
pattern (and simulated exploitation pattern), in a relatively data rich 
scenario. It is possible that the results of our study could have differed 
with more sparse auxiliary data or with different life histories/move-
ment patterns, and we encourage future research to explore these phe-
nomena. We find that the spatially explicit operating model structure, to 
be fit by spatially aggregated estimation models, offers an ideal frame-
work to test each of the issues noted above. 

4.8. Conclusion 

Overall, our study suggests that the Logistic-normal and Dirichlet- 

multinomial likelihoods are both prudent choices with respect to 
modeling composition data in stock assessment. Based on our simula-
tions, the choice of which to employ should depend on the sample size of 
the data and the biologists’ conception of the potential degree of process 
error. When the composition sample size is moderate to large and there 
exists at least a moderate amount of process error, the Logistic-normal 
likelihood may be the best estimator. When the sample size is small, 
when process error is negligible, or when observations of zeros are 
prevalent, the Dirichlet-multinomial is a reasonable choice. 
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Appendix A 

Likelihood Formulations 
Multinomial 
The multinomial likelihood is given in Eq. 4.1. Parameter Ny in this formula denotes the sample size collected (number of fish aged) in that year. This is 

the weighting parameter for the multinomial and cannot be estimated within the assessment model as its integral decreases as sample size increases (and 
thus the negative log likelihood decreases as sample size decreases), resulting in the effective sample size tending to zero if estimated (Francis, 2017). This 
likelihood was used in two different treatments; weighted using the true sample size and iteratively weighted from ESSs calculated using equation TA1.8 in 
Francis (2011). Effective sample sizes were considered converged once the mean deviation between runs was less than 5 (i.e., mean(ESS(i) - ESS(i-1)) < 5). 
This convergence rule for ESS was arbitrarily chosen as it has been noted that there is technically no correct way to do this and that it usually takes large 
changes in ESS to result in appreciable changes in model outputs (Francis, 2017). The multinomial cannot account for positive correlations in composition 

data, as the correlation between expected proportions in bins k and j, P̂k and P̂j, is found using −

(

P̂k P̂j
/

(1 − P̂k)(1 − P̂j)

)0.5
, which results in negative 

correlations between bins, which are usually small. Another important aspect of the multinomial distribution is that it is a discrete distribution. 
Robust Multinomial 
The robust multinomial (Eq. 4.2), which has also been called the multivariate normal (Francis, 2014) and the normal approximation (Maunder, 

2011), was originally formulated in Fournier et al. (1990) as a normal approximation with a multinomial variance that includes two robustifying 
constants (0.1 and 0.01, see Eq. 4.2) meant to aid in keeping a small number of outlier composition data points from unduly influencing model fit. We 
chose to include this likelihood within our study as it is commonly used within age- and size-structured assessments (Francis, 2011; Maunder, 2011). 
The weighting parameter is the same as in the standard multinomial, Ny, and cannot be estimated within an assessment as its integral depends on Ny 
(Francis, 2014). The robust multinomial does not allow for correlation structure, although some correlation may be inferred given the nature of 
composition (if you are in one bin, you cannot be in another). We chose the Starr et al. (1999) parameterization of the robust multinomial likelihood, 
which uses observed proportions instead of expected proportions in some components of the formula, as we found it performed better than the original 
parameterization described in Fournier et al. (1990) and Francis (2011). This parameterization was also recommended in Maunder (2011). The robust 
multinomial was also used in two treatments; weighted using the true sample size and iteratively weighted from ESSs calculated using equation TA1.8 
in Francis (2011). Effective sample sizes were considered converged once the mean deviation between runs was less than 5 (i.e., mean(ESS(i) - ESS 
(i-1)) < 5). 

Algorithm TA1.8 from Francis (2011): 

Ny = Ñywa 
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Where Ny references the effective sample size used in the likelihood formula and the tilde ( ∼ ) references a value from the previous iteration (first 
iteration uses the raw sample size). wa is found using wa = 1

Var

⎛

⎜
⎜
⎝[Oy − Ey]

/ ̅̅̅̅̅̅̅̅̅̅̅̅

(vy/Ñy)

√

⎞

⎟
⎟
⎠

Where Oy is the observed mean age from the composition data set for a given year, found using Oy =
∑

a
a*Pa,y, and Ey the expected mean age, Ey =

∑

a
a*P̂a,y. The symbols Pa,y and P̂a,y in these formulas denote an observed and expected composition data point, respectively. The variance of the 

expected age distribution, vy, is found using vy =
∑

a
(a2 P̂a,y) − E2

y . 

Dirichlet 
The Dirichlet likelihood (Eq. 4.3), as described in Francis (2014), contains weighting parameter α, which is estimable within an assessment model. 

A composition, P, conforms to a Dirichlet distribution with parameters [P̂, α] where P̂ denotes a vector of expected composition. Each individual 
proportion is found by Pa = Xa∑

a
Xa

, where Xa are independent gamma variates with shape parameters αP̂a and common scale parameter α. As in Francis 

(2014), we chose to allow the weighting of the Dirichlet likelihood to vary as a function of sample size each year using 

αy = α

⎡

⎢
⎣

Ny

∑

y
Ny

/

Nyrs

⎤

⎥
⎦

Where Nyrs denotes the number of years and thus 
∑

y
Ny/Nyrs denotes the mean sample size over the time series. In this formulation αy is analogous to 

ESS, and α is estimable within the stock assessment. The correlation between proportions is the same as the multinomial (Francis, 2014), however the 
Dirichlet is a continuous distribution. 

Dirichlet-multinomial 
The Dirichlet-multinomial likelihoods used herein were parameterized as described in Thorson et al. (2017); one formulated with a weighting 

parameter proportional to the sample size (linear parameterization), and one formulated with a weighting parameter that saturates (reaches an 
asymptote) at large sample sizes. A composition is said to be Dirichlet-multinomially distributed with parameters [P̂, α,N] if it has a multinomial 
distribution with parameters [P’, N], where P’ is Dirichlet distributed with parameters [P̂,α]. The weighting parameters θ and β (see Eqs. 4.4 & 4.5) 
can be estimated within the assessment. It is a discrete distribution and has the same correlational structure as the multinomial. Effective sample sizes 
for each parameterization of the DM can be calculated using NESS

y =
Ny+Nyβ
Ny+β for the saturating parameterization and NESS

y = 1
1+θ + Ny

θ
1+θ for the linear 

parameterization. 
Logistic-normal 
The Logistic-normal likelihood (Eq. 4.6) was parameterized as in Francis (2014). The first use of the logistic normal within stock assessment is 

attributed to Schnute and Richards (1995). A composition is said to conform to a Logistic-normal distribution with parameters 
[

P̂,C
]

when Pa = eXa∑

a
eXa

. 

In this case, X conforms to a multivariate normal distribution with mean log(P̂) and covariance matrix C. The Logistic-normal is a continuous dis-
tribution and is theoretically able to account for correlations between bins by specifically parameterizing the variance-covariance matrix to do so 
(although the correlations are on the original multivariate normal scale (Francis, 2014)). In this study, we explored the performance of a first and 
second order autoregressive (AR(1), AR(2)) parametrization of the variance-covariance matrix in addition to an autoregressive moving average 
(ARMA) parameterization. The weighting parameters for these parameterizations are σAR1 and φ for AR(1); σAR2, φ1, and φ2 for AR(2); and σARMA, 

φARMA, and ψ for the ARMA. Different weighting between years based on composition sample size was achieved using Wy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

y
(Ny)/Nyrs

Ny

√

where σy =

σWy (with σ as a stand in for either σAR1, σAR2, or σARMA), as in Francis (2014). This allows σy to vary by year which results in a unique 
variance-covariance matrix each year, while the correlations between bins, ρ|a− a’|, are treated as constant over time. The variance-covariance matrix in 
each year, Cy, is calculated for each formulation of the Logistic-normal using Cy,a,a’ = σ2

yρ|a− a’|, where 
ρ|a− a’| = φ|a− a’| for an AR(1) process. 
ρ0 = 1 ρ1 =

φ1
(1− φ2)

ρk = φ1ρk− 1 + φ2ρk− 2 for an AR(2) process 

ρ0 = 1 ρ1 = φ +
ψ(

1+(φARMA+ψ)2/(1− φ2
ARMA)

) ρk = φk− 1
ARMAρ1 for an ARMA process. 

The negative log likelihood can then be found using equation A9 in Francis (2014) 

NLL =
∑

y

[

0.5(Nb − 1)*log(2π) +
∑

a

[
log
(
Pa,y
)]

+ 0.5*log
( ⃒
⃒Vy
⃒
⃒
)
+ (Nb − 1)*log

(
Wy
)
+

(
wT

y V− 1
y wy

)

2W2
y

]

Where Vy = KCyKT, K is an [(Nb − 1),Nb ] matrix formed by adding a vector filled with − 1 to the right side of an identity matrix with dimensions 

[Nb − 1,Nb − 1], and w is a matrix where each row depicts a year and contains a vector of length (Nb − 1), filled using wa,y = log
(

Pa,y
PNb,y

)

−
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log

(

P̂a,y

P̂Nb,y

)

for a in 0, 1, 2, ..., ... ,Nb − 1. The term Nb refers to the number of bins in a composition dataset. The σ parameter for each likelihood 

treatment was estimated on the log scale, φ was bound between (-1,1) for the AR(1) and ARMA, and ψ was effectively unbounded. For the AR(2) 
process estimation, bounds of (-2,2) were placed on φ1 and a new parameter, ω, was estimated to keep φ2 within proper bounds. This parameter was 
estimated on the logit scale, keeping it between (0,1) and used to calculate φ2 using φ2 = − 1+ (2 − |φ1| )ω. This was done to ensure that the pa-
rameters of the AR(2) process lie within the triangle defined by − 1 ≤ φ2 < 1 − |φ1| (for stability of AR(2) process; Francis, 2014). 

Appendix B 

Operating Model Parameterization and Preference Functions 
Due to the differences in the spatial extent between the spatially explicit operating model in this study and the Gulf of Mexico red snapper 

assessment, some population parameters from the assessment had to be adjusted to account for the smaller geographic area. The GOM red snapper 
assessment allocates total recruits each year to the western GOM (mean ~ 64 %) and eastern GOM (mean ~ 36 %), split by the Mississippi River. In 
2016 and for the assessment projection to 2076, this apportionment was 23 % to the eastern GOM and 77 % to the Western GOM. To obtain the 
unfished recruitment for Florida waters, we calculated the proportion of recruits in the eastern GOM (using the 2016 estimate) that would occur in 
Florida waters based on availability of habitat for recruitment. We did this by dividing the spatial cells with depths from 10− 70 m in Florida waters by 
the total spatial cells with depths from 10− 70 m in the eastern GOM (eastern GOM longitudinal cutoff -89◦). The depth cutoff of 70 m was chosen as 
this is roughly equivalent to the mean + 2SD of depth preference of age 0 red snapper (see movement section). Unfished recruitment of red snapper for 
Florida (and thus the spatial model) was then calculated as the product of unfished recruitment for the entire Gulf of Mexico (1.63E8), the proportion 
of recruits allocated east of the Mississippi (23 %), and the proportion of recruits in the east zone that are allocated to Florida (~90 %). Equilibrium 
spawning biomass for Florida was then calculated by projecting this new unfished recruitment to a plus group at age 20 using a natural mortality 
ogive, multiplying each value by its age specific fecundity, and summing across the values. 

Preference Functions 
Data 
Spatially referenced red snapper catch at age data was compiled from the US Gulf of Mexico reef fish bottom longline and vertical line observer 

database. This database contained captures-at-age for red snapper age 0− 10. We compiled catches at age across gears and classified them into the 0.1 
decimal degree grids. These data were not standardized for effort. We cross referenced capture locations with depth and substrate shapefiles to create 
movement preference functions. 

Depth 
The preference function for depth was age specific. Depth information for the GOM was collected from Becker et al. (2009; https://topex.ucsd.edu 

/cgi-bin/get_srtm30.cgi). This data set was at a more fine resolution than the spatially explicit grid, in 30-arc seconds (30 arc seconds = 0.0083 
decimal degrees). For this reason, depth values for each spatial cell within the model were calculated as the mean depth (of 30 arc second data) within 
the cell. The mean and variance in depth of capture for each age was calculated and a Von-Bertalanffy function was fit through these values (with age 
as the explanatory variable) so as to capture the asymptotic nature of these two relationships as fish aged (Supplemental Fig. 22). The depth preference 
function for each age was then characterized as a normal distribution using the mean and variance of capture depth (from the Von-Bertalanffy 
functions). 

Substrate Type 
The preference function for substrate type was calculated as the percentage of red snapper at age that were captured on a specific substrate type 

(Supplemental Fig. 23). Bottom substrate data were collected from the NOAA Gulf of Mexico Data Atlas (https://www.ncddc.noaa.gov/website/ 
DataAtlas/atlas.htm). Substrate classes included rock, gravel, sand, and mud, and are divided into dominant classifications if the most abundant 
fractions of the substrate classes are greater than 66 %, and subdominant classifications if the most abundant fraction is greater than 33 %, resulting in 
8 substrate classes (Supplemental Fig. 24). 

Distance 
The distance preference function, referencing the distance from one cell to another cell, was modeled as an exponential decay by Euclidean 

distance in km from the midpoint of cell (Supplemental Fig. 25). 

e− λD*km 

The decay rate (λD) was parameterized using tag-recapture data on red snapper. We fit an exponential decay model using maximum likelihood to 
the distance red snapper traveled in a year, corrected for time at liberty. We omitted all recaptures where fish spent less than 200 days at liberty, as the 
daily movement rates were much higher for fish that spent less than 200 days at liberty. Tag-recapture data on red snapper was obtained from Addis 
et al. (2013). 

Density 
The density preference function (Supplemental Fig. 26) was modeled as an exponential decay below a density threshold (Bentley et al., 2004). 

⎧
⎨

⎩

1 if D ≤ D*

1
/(

D
D*

)λDD

if D > D* 

The quantity D describes density of fish in a cell, and was characterized as the sum of the squared lengths of fish within a cell (
∑

a
Ny,a,cL2

a , where La 

refers to the length of a fish age a). The density threshold D* (Table 1; OMP.20) was arbitrarily set at the 75 % quantile of the unfished densities (year 1 
of the model) in each cell. The decay rate, λDD (OMP. 21), was arbitrarily set at 0.5. 

N. Fisch et al.                                                                                                                                                                                                                                    

https://topex.ucsd.edu/cgi-bin/get
https://topex.ucsd.edu/cgi-bin/get
https://www.ncddc.noaa.gov/website/DataAtlas/atlas.htm
https://www.ncddc.noaa.gov/website/DataAtlas/atlas.htm


Fisheries Research 243 (2021) 106069

25

Appendix C. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.fishres.2021.106069. 
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